Publications by authors named "Guoxi Qiu"

Thermosensitive nanoparticles can be activated by externally applying heat, either through laser irradiation or magnetic fields, to trigger the release of drug payloads. This controlled release mechanism ensures that drugs are specifically released at the tumor site, maximizing their effectiveness while minimizing systemic toxicity and adverse effects. However, its efficacy is limited by the low concentration of drugs at action sites, which is caused by no specific target to tumor sties.

View Article and Find Full Text PDF

Stemness and metastasis are the two main challenges in cancer therapy and are related to disease relapse post-treatment. They both have a strong correlation with chemoresistance and poor prognosis, ultimately leading to treatment failure. It has been reported that chemotherapy can induce stemness and metastasis in many cancer types, especially treatment with the chemotherapeutic agent doxorubicin (DOX) in breast cancer.

View Article and Find Full Text PDF
Article Synopsis
  • - Tumor-associated macrophages (TAMs) significantly contribute to tumor development through cytokine secretion and direct interaction with tumor cells, making them a promising target for therapy.
  • - Researchers created a specialized nanocarrier (Ex 26-CSOPOSA) that releases the c-Myc inhibitor JQ1 in response to reactive oxygen species (ROS) and targets both tumor cells and TAMs to induce cell death and prevent macrophage polarization.
  • - The study found that JQ1 not only inhibits tumor cell migration stimulated by M2 macrophages but also demonstrates a dual-targeting delivery method that effectively reduces tumor growth and metastasis while minimizing side effects.
View Article and Find Full Text PDF

The active targeting strategy has achieved inspiring progress for drug accumulation in tumor therapy; however, the insufficient expression level of many potential receptors poses challenges for drug delivery. Poly-γ-glutamic acid (γ-pGluA), a naturally occurring anionic biopolymer, showed high affinity with tumor-associated gamma-glutamyl transpeptidase (GGT), which localized on the cell surface and exhibited intracellular redox homeostasis-dependent expression pattern; thus, GGT was utilized for mediating endocytosis of nanoparticles. Herein, GGT-targeting nanopolyplexes (γ-pGluA-CSO@Fe, PCFN) consisting of cationic chitosan and GGT-targeting γ-pGluA blended with iron ion were constructed to load reactive oxygen species-induced menadione (MA) and doxorubicin, which were utilized to investigate the mechanism of GGT up-regulation.

View Article and Find Full Text PDF

Tumor-draining lymph node (TDLN), already bathed in tumor antigens, has been proposed as an intriguing site for cancer immunotherapy. Targeted delivery of adjuvants to TDLN, presumably could induce antitumor immunity for personalized immunotherapy. Although molecular adjuvants can be used for personalized immunotherapy, their efficacy is limited by insufficient antigen uptake by dendritic cells (DCs).

View Article and Find Full Text PDF

An insufficient drug concentration at the target site and drug efflux resulting in poor efficacy are recognized as important obstacles in osteoporosis treatment. Simvastatin (SIM), which can treat osteoporosis by promoting osteoblast differentiation and mineralization through the bone morphogenetic proteins (BMP)-Smad signaling pathway, has lower bioavailability, and less bone tissue distribution. Herein, novel lipid nanoparticles (LNPs) delivering SIM (SIM/LNPs) for osteoporosis therapy were developed with aspartic oligopeptide (ASP , here ASP)-based bone-targeting moieties grafted to the nanoparticles (SIM/ASP-LNPs) in an attempt to increase the concentration of SIM in bones with a relatively low dose to minimize adverse effects.

View Article and Find Full Text PDF

Background: Phototherapy is a potential new candidate for glioblastoma (GBM) treatment. However inadequate phototherapy due to stability of the photosensitizer and low target specificity induces the proliferation of neovascular endothelial cells for angiogenesis and causes poor prognosis.

Methods: In this study, we constructed c(RGDfk)-modified glycolipid-like micelles (cRGD-CSOSA) encapsulating indocyanine green (ICG) for dual-targeting neovascular endothelial cells and tumor cells, and cRGD-CSOSA/ICG mediated dual effect of PDT/PTT with NIR irradiation.

View Article and Find Full Text PDF

: Nano-carrier based combinational therapies for tumor cells hold great potential to improve the outcomes of patients. However, cancer associated fibroblasts (CAFs) in desmoplastic tumors and the derived pathological tumor stroma severely impede the access and sensitibity of tumor cells to antitumor therapies. Glycolipid-based polymeric micelles (GLPM) were developed to encapsulate an angiotensin II receptor I inhibitor (telmisartan, Tel) and a cytotoxic drug (doxorubicin, DOX) respectively, which could exert combinational antitumor efficacy by reprogramming tumor microenvironment to expose the vulnerability of internal tumor cells.

View Article and Find Full Text PDF

Multi-cycle treatment strategies were frequently applied in anti-tumor therapy in clinic. However, numerous tumors developed drug resistance during this process, and few researches paid attention to the multi-cycle treatment process when a nano carrier was adopted. In this research, a glycolipid-like nanocarrier encapsulating anti-tumor drug doxorubicin (DOX) was adopted to perform a long term drug stimulation in vitro cell line and a tri-cycle treatment on xenograft tumors to explore its effect in process of developing drug resistance.

View Article and Find Full Text PDF