Publications by authors named "Guoxi Luo"

The chip-scale hybrid optical pumping spin-exchange relaxation-free (SERF) atomic magnetometer with a single-beam arrangement has prominent applications in biomagnetic measurements because of its outstanding features, including ultrahigh sensitivity, an enhanced signal-to-noise ratio, homogeneous spin polarization and a much simpler optical configuration than other devices. In this work, a miniaturized single-beam hybrid optical pumping SERF atomic magnetometer based on a microfabricated atomic vapor cell is demonstrated. Although the optically thin Cs atoms are spin-polarized, the dense Rb atoms determine the experimental results.

View Article and Find Full Text PDF

With the increasing development of intelligent robots and wearable electronics, the demand for high-performance flexible energy storage devices is drastically increasing. In this study, flexible symmetric microsupercapacitors (MSCs) that could operate in a wide working voltage window were developed by combining laser-direct-writing graphene (LG) electrodes with a phosphoric acid-nonionic surfactant liquid crystal (PA-NI LC) gel electrolyte. To increase the flexibility and enhance the conformal ability of the MSC devices to anisotropic surfaces, after the interdigitated LG formed on the polyimide (PI) film surface, the devices were further transferred onto a flexible, stretchable and transparent polydimethylsiloxane (PDMS) substrate; this substrate displayed favorable flexibility and mechanical characteristics in the bending test.

View Article and Find Full Text PDF

With the rapid development of various fields, including aerospace, industrial measurement and control, and medical monitoring, the need to quantify flow velocity measurements is increasing. It is difficult for traditional flow velocity sensors to fulfill accuracy requirements for velocity measurements due to their small ranges, susceptibility to environmental impacts, and instability. Herein, to optimize sensor performance, a flexible microelectromechanical system (MEMS) thermal flow sensor is proposed that combines the working principles of thermal loss and thermal temperature difference and utilizes a flexible cavity substrate made of a low-thermal-conductivity polyimide/SiO (PI/SiO) composite porous film to broaden the measurement range and improve the sensitivity.

View Article and Find Full Text PDF

Flexible capacitive tactile sensors show great promise in personalized healthcare monitoring and human-machine interfaces, but their practical application is normally hindered because they rarely possess the required comprehensive performance, that is, high pressure sensitivity and fast response within a broad pressure range, high structure robustness, performance consistency, etc. This paper aims to engineer flexible capacitive pressure sensors with highly ordered porous dielectric microstructures and a 3D-printing-based fully solution-processable fabrication process. The proposed dielectric layer with uniformly distributed interior microporous can not only increase its compressibility and dynamic response within an extended pressure range but also enlarge its contact area with electrodes, contributing to a simultaneous improvement in the sensitivity, response speed, detection range, and structure robustness.

View Article and Find Full Text PDF

The development of excellently stretchable, highly mobile, and sustainable power supplies is of great importance for self-power wearable electronics. Transpiration-driven hydrovoltaic power generator (HPG) has been demonstrated to be a promising energy harvesting strategy with the advantages of negative heat and zero-carbon emissions. Herein, this work demonstrates a fiber-based stretchable HPG with the advantages of high output, portability, knittability, and sustainable power generation.

View Article and Find Full Text PDF

Flexible electronics have demonstrated various strategies to enhance the sensory ability for tactile perception and wearable physiological monitoring. Fibrous microstructures have attracted much interest because of their excellent mechanical properties and fabricability. Herein, a structurally robust fibrous mat was first fabricated by electrospinning, followed by a sequential process of functionalization utilizing ultrasonication treatment and in situ polymerization growth.

View Article and Find Full Text PDF

Given the worldwide increase in diabetes, there is an urgent need for glucose sensors that can achieve the on-body detection of glucose concentration. With the development of nanomaterials and flexible electronics, wearable electrochemical enzyme-free glucose biosensors that can conveniently, continuously and stably monitor the glucose concentrations of diabetes patients without invasion and risk of infection are coming into focus. However, despite the enormous efforts toward wearable electrochemical enzyme-free glucose sensors, there have been limited achievements in developing a stretchable and breathable glucose sensor with high sensitivity, low detection limit, and excellent catalytic activity towards glucose oxidation in neutral media, to meet the need for continuous wearable glucose monitoring in scenarios such as the on-body detection of glucose in human sweat.

View Article and Find Full Text PDF

Ultrasonic fluid bubble detection is important in industrial controls, aerospace systems and clinical medicine because it can prevent fatal mechanical failures and threats to life. However, current ultrasonic technologies for bubble detection are based on conventional bulk PZT-based transducers, which suffer from large size, high power consumption and poor integration with ICs and thus are unable to implement real-time and long-term monitoring in tight physical spaces, such as in extracorporeal membrane oxygenation (ECMO) systems and dialysis machines or hydraulic systems in aircraft. This work highlights the prospect of capacitive micromachined ultrasonic transducers (CMUTs) in the aforementioned application situations based on the mechanism of received voltage variation caused by bubble-induced acoustic energy attenuation.

View Article and Find Full Text PDF

The electronic spin polarization of alkali-metal-vapor atoms is a pivotal parameter for atomic magnetometers. Herein, a novel method is presented for determining the spin polarization with a miniaturized single-beam spin-exchange-relaxation-free (SERF) magnetometer on the basis of zero-field cross-over resonance. Two separate laser beams are utilized to heat the cell and interrogate the vapor atoms, respectively.

View Article and Find Full Text PDF

Herein, hybrid micro-supercapacitors (MSCs), consisting of positive CoNi layer double hydroxides (LDHs) decorated on carbon nanotubes (CoNi LDHs@CNTs) and negative CNT electrodes, were assembled by facile drop-coated and electrodeposition methods. The as-fabricated MSCs were optimized in view of electrochemical performance, and the CoNi LDHs-2@CNTs//CNT MSC exhibited a favorable performance and was thus chosen to be the candidate for MSC device package. The packaged CoNi LDHs-2@CNTs//CNT MSC demonstrated a large areal capacitance of 11.

View Article and Find Full Text PDF

Tactile sensors have been widely used in the areas of health monitoring and intelligent human-machine interface. Flexible tactile sensors based on nanofiber mats made by electrospinning can meet the requirements of comfortability and breathability for wearing the body very well. Here, we developed a flexible and self-powered tactile sensor that was sandwich assembled by electrospun organic electrodes and a piezoelectric layer.

View Article and Find Full Text PDF

A micromachined resonator immersed in liquid provides valuable resonance parameters for determining the fluidic parameters. However, the liquid operating environment poses a challenge to maintaining a fine sensing performance, particularly through electrical characterization. This paper presents a piezoelectric micromachined cantilever with a stepped shape for liquid monitoring purposes.

View Article and Find Full Text PDF

Herein, a novel conductive poly(N-phenylglycine) (PNPG) polymer was successfully prepared, byelectrochemical polymerization method (+0.75 VAg/AgCl) for 10 min, on flexible stainless-steel plate coated with a thin Au film (Au/SS) to serve as a binder-free pseudocapacitive PNPG/Au/SS electrode for energy storage devices. Compared to the electrode without Au coating, PNPG/Au/SS electrode exhibited better electrochemical performance with larger specific capacitance (495 F gat a current density of 2 A g), higher rate performance and lower resistance, which are good indications to act as a positive electrode for asymmetric supercapacitor devices.

View Article and Find Full Text PDF

Gelatin methacryloyl (GelMA) is a widely used hydrogel with skin-derived gelatin acting as the main constituent. However, GelMA has not been used in the development of wearable biosensors, which are emerging devices that enable personalized healthcare monitoring. This work highlights the potential of GelMA for wearable biosensing applications by demonstrating a fully solution-processable and transparent capacitive tactile sensor with microstructured GelMA as the core dielectric layer.

View Article and Find Full Text PDF

Electrostatic nanogenerators or capacitive sensors that leverage electrostatic induction for power generation or sensing, has attracted significant interests due to their simple structure, ease of fabrication, and high device stability. However, in order for such devices to work, an additional power source or a post-charging process is necessary to activate the electrostatic effect. In this work, an electrostatic nanogenerator is fabricated using electrospun polystyrene (PS) mats and dip-coated graphene oxide (GO) films as the self-charged components.

View Article and Find Full Text PDF

Capacitive micromachined ultrasonic transducers (CMUTs) are promising in the emerging fields of personalized ultrasonic diagnostics, therapy, and noninvasive 3-D biometric. However, previous theories describing their mechanical behavior rarely consider multilayer and anisotropic material properties, resulting in limited application and significant analysis errors. This article proposes closed-form expressions for the static deflection, collapse voltage, and resonant frequency of circular-microplate-based CMUTs, which consider both the aforementioned properties as well as the effects of residual stress and hydrostatic pressure.

View Article and Find Full Text PDF

This study describes the design and implementation of a novel high-performance piezoresistive accelerometer for the measurement of shock acceleration of up to 100 000 g. The structure of the accelerometer sensing chip was implemented with piezoresistive self-support beams. The piezoresistors were made in piezoresistive sensing micro-beams, which were independent of support beams, to weaken the correlation between measuring sensitivity and resonant frequency.

View Article and Find Full Text PDF

In this article, an analytical equivalent circuit model is established for the piezoelectric micromachined ultrasonic transducer (PMUT) cell and array with a combination of the annular and circular diaphragms used for structural optimization and complex array design. Based on this model, a comprehensive analysis is conducted on the acoustic-structural coupling of an annular and circular diaphragm-coupled PMUT (AC-PMUT) with a new excitation method. The model-derived results are in good agreement with the simulation and experimental results.

View Article and Find Full Text PDF

This article presents a design of resonant cavity-based piezoelectric micromachined ultrasonic transducers (PMUTs), including impedance matching tube-integrated (T) and Helmholtz resonant (HR) cavity-integrated PMUTs. In addition, equivalent circuit models for single PMUT cell and PMUT array are developed for structural optimization and complex array design. The model-derived results agree well with the FEM results.

View Article and Find Full Text PDF

The ability of electrospun polyvinylidene fluoride (PVDF) fibers to produce piezoelectricity has been demonstrated for a while. Widespread applications of electrospun PVDF as an energy conversion material, however, have not materialized due to the random arrangement of fibers fabricated by traditional electrospinning. In this work, a developed 3D electrospinning technique is utilized to fabricate a PVDF micro wall made up of densely stacked fibers in a fiber-by-fiber manner.

View Article and Find Full Text PDF

Wireless sensor nodes (WSNs) for temperature and humidity monitoring are commonly used in a cold chain logistics container. Energy harvesting technology is expected to realize the sustainable self-power supply for the WSN. Low amplitude and broadband vibration energy harvesting performance are the key points in train application.

View Article and Find Full Text PDF

This article presents a resonant cavity-based array design for piezoelectric micromachined ultrasonic transducers (PMUTs). The cavity depth is designed to ensure that its open end achieves a considerably smaller acoustic impedance than the surrounding PMUT cells. The interference acoustic wave generated between every two adjacent PMUT cells at the near surface of the array will take an easy path down to the cavity bottom.

View Article and Find Full Text PDF

This paper presents an equivalent circuit model, a systematic design, and optimization method for developing a broadband annular diaphragm piezoelectric micromachined ultrasonic transducer (A-PMUT). By utilizing array analysis methods, an annular diaphragm is regarded as an array consisting of equally spaced sector diaphragms influencing each other by crosstalk effect. The model successfully explains the phenomenon of multi-resonance peaks in the frequency response curve, sharing the same vibration mode.

View Article and Find Full Text PDF

Electrospinning, a process that converts a solution or melt droplet into an ejected jet under a high electric field, is a well-established technique to produce one-dimensional (1D) fibers or two-dimensional (2D) randomly arranged fibrous meshes. Nevertheless, the direct electrospinning of fibers into controllable three-dimensional (3D) architectures is still a nascent technology. Here, we apply near-field electrospinning (NFES) to directly write arbitrarily shaped 3D structures through consistent and spatially controlled fiber-by-fiber stacking of polyvinylidene fluoride (PVDF) fibers.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session08ru1ap8bkmdjtd93iood67fbjil5slg): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once