Sci Total Environ
December 2024
The misuse of uranium is a major threat to human health and the environment. In microbial ecosystems, microbes deploy various strategies to cope with uranium-induced stress. However, the exact ecological strategies and mechanisms underlying uranium tolerance in microbes remain unclear.
View Article and Find Full Text PDFAlthough natural attenuation is an economic remediation strategy for uranium (U) contamination, the role of organic molecules in driving U natural attenuation in postmining aquifers is not well-understood. Groundwaters were sampled to investigate the chemical, isotopic, and dissolved organic matter (DOM) compositions and their relationships to U natural attenuation from production wells and postmining wells in a typical U deposit (the Qianjiadian U deposit) mined by neutral in situ leaching. Results showed that Fe(II) concentrations and δS and δO values increased, but U concentrations decreased significantly from production wells to postmining wells, indicating that Fe(III) reduction and sulfate reduction were the predominant processes contributing to U natural attenuation.
View Article and Find Full Text PDFThe remediation of groundwater subject to in situ leaching (ISL) for uranium mining has raised extensive concerns in uranium mill and milling. This study conducted bioremediation through biostimulation and bioaugmentation to the groundwater in an area in northern China that was contaminated due to uranium mining using the CO2 + O2 neutral ISL (NISL) technology. It identified the dominant controlling factors and mechanisms driving bioremediation.
View Article and Find Full Text PDFJ Environ Radioact
July 2024
Seepage of uranium tailings has become a focus of attention in the uranium mining and metallurgy industry, and in-situ microbial remediation is considered an effective way to treat uranium pollution. However, this method has the drawbacks of easy biomass loss and unstable remediation effect. To overcome these issues, spare red soil around the uranium mine was used to enhance the efficiency and stability of bioremediation.
View Article and Find Full Text PDFZerovalent iron [Fe(0)] can donate electron for bioprocess, but microbial uranium (VI) [U(VI)] reduction driven by Fe(0) is still poorly understood. In this study, Fe(0) supported U(VI) bio-reduction was steadily achieved in the 160-d continuous-flow biological column. The maximum removal efficiency and capacity of U(VI) were 100% and 46.
View Article and Find Full Text PDFThe effects of aquatic sediment concentrations, grain size distribution and hydrodynamic conditions on sorption behavior of phenanthrene (PHE) on sediments collected from Yangtze River (Wuhan catchment) were investigated. The results showed that the sorption behavior of PHE was mainly affected by the organic carbon in different phases, i.e.
View Article and Find Full Text PDF