Publications by authors named "Guowu Yuan"

With the advancement of deep learning, related networks have shown strong performance for Hyperspectral Image (HSI) classification. However, these methods face two main challenges in HSI classification: (1) the inability to capture global information of HSI due to the restriction of patch input and (2) insufficient utilization of information from limited labeled samples. To overcome these challenges, we propose an Advanced Global Prototypical Segmentation (AGPS) framework.

View Article and Find Full Text PDF

The extraction of effective classification features from high-dimensional hyperspectral images, impeded by the scarcity of labeled samples and uneven sample distribution, represents a formidable challenge within hyperspectral image classification. Traditional few-shot learning methods confront the dual dilemma of limited annotated samples and the necessity for deeper, more effective features from complex hyperspectral data, often resulting in suboptimal outcomes. The prohibitive cost of sample annotation further exacerbates the challenge, making it difficult to rely on a scant number of annotated samples for effective feature extraction.

View Article and Find Full Text PDF

Meteorological disasters along highways significantly reduce road traffic efficiency. Low visibility caused by heavy fog is a severe meteorological disaster that greatly increases highway traffic accidents. Accurately predicting highway visibility and taking timely response measures can reduce the impact of meteorological disasters and improve traffic safety.

View Article and Find Full Text PDF

Fire incidents near power transmission lines pose significant safety hazards to the regular operation of the power system. Therefore, achieving fast and accurate smoke detection around power transmission lines is crucial. Due to the complexity and variability of smoke scenarios, existing smoke detection models suffer from low detection accuracy and slow detection speed.

View Article and Find Full Text PDF

In tobacco production, cigarettes with appearance defects are inevitable and dramatically impact the quality of tobacco products. Currently, available methods do not balance the tension between detection accuracy and speed. To achieve accurate detection on a cigarette production line with the rate of 200 cigarettes per second, we propose a defect detection model for cigarette appearance based on YOLOv5n (You Only Look Once Version 5 Nano), called CJS-YOLOv5n (YOLOv5n with C2F (Cross Stage Partial (CSP) Bottleneck with 2 convolutions-fast), Jump Concat, and SCYLLA-IoU (SIoU)).

View Article and Find Full Text PDF

Pedestrian detection in crowded scenes is widely used in computer vision. However, it still has two difficulties: 1) eliminating repeated predictions (multiple predictions corresponding to the same object); 2) false detection and missing detection due to the high scene occlusion rate and the small visible area of detected pedestrians. This paper presents a detection framework based on DETR (detection transformer) to address the above problems, and the model is called AD-DETR (asymmetrical relation detection transformer).

View Article and Find Full Text PDF

Aerial remote sensing images have complex backgrounds and numerous small targets compared to natural images, so detecting targets in aerial images is more difficult. Resource exploration and urban construction planning need to detect targets quickly and accurately in aerial images. High accuracy is undoubtedly the advantage for detection models in target detection.

View Article and Find Full Text PDF

High-voltage transmission lines are located far from the road, resulting in inconvenient inspection work and rising maintenance costs. Intelligent inspection of power transmission lines has become increasingly important. However, subsequent intelligent inspection relies on accurately detecting various key components.

View Article and Find Full Text PDF