Publications by authors named "Guowu Wei"

Mechanical metamaterials with specifically designed cells can provide unusual thermal expansion properties for diverse applications. Limited by very few available cell topologies and complicated non-linear structural deformation, most existing thermal expansion metamaterials can only achieve orthogonally isotropic negative/zero/positive thermal expansion (NTE/ZTE/PTE) within a mild range, especially the 3D ones. Here, based on one-degree-of-freedom kirigami polyhedrons proposed with a kinematic design strategy, a family of 3D isotropic and orthotropic metamaterials capable of programmable NTE, PTE, and even ZTE over ultra-wide range is developed.

View Article and Find Full Text PDF

In tactile sensing, decoding the journey from afferent tactile signals to efferent motor commands is a significant challenge primarily due to the difficulty in capturing population-level afferent nerve signals during active touch. This study integrates a finite element hand model with a neural dynamic model by using microneurography data to predict neural responses based on contact biomechanics and membrane transduction dynamics. This research focuses specifically on tactile sensation and its direct translation into motor actions.

View Article and Find Full Text PDF

To overcome the challenges posed by the complex structure and large parameter requirements of existing classification models, the authors propose an improved extreme learning machine (ELM) classifier for human locomotion intent recognition in this study, resulting in enhanced classification accuracy. The structure of the ELM algorithm is enhanced using the logistic regression (LR) algorithm, significantly reducing the number of hidden layer nodes. Hence, this algorithm can be adopted for real-time human locomotion intent recognition on portable devices with only 234 parameters to store.

View Article and Find Full Text PDF

Leg properties have been involved in the broad study of human walking from mechanical energy to motion prediction of robotics. However, the variable leg elasticities and their functions during gait have not been fully explored. This study presented that the fundamental leg properties during human walking comprise axial stiffness, rest leg length, tangential stiffness and force-free leg angles.

View Article and Find Full Text PDF

Artificial muscles are promising in soft exoskeletons, locomotion robots, and operation machines. However, their performance in contraction ratio, output force, and dynamic response is often imbalanced and limited by materials, structures, or actuation principles. We present lightweight, high-contraction ratio, high-output force, and positive pressure-driven X-crossing pneumatic artificial muscles (X-PAMs).

View Article and Find Full Text PDF

Soft tactile sensors based on piezoresistive materials have large-area sensing applications. However, their accuracy is often affected by hysteresis which poses a significant challenge during operation. This paper introduces a novel approach that employs a backpropagation (BP) neural network to address the hysteresis nonlinearity in conductive fiber-based tactile sensors.

View Article and Find Full Text PDF

In this article, a new hydraulic semi-active knee (HSAK) prosthesis is proposed. Compared with knee prostheses driven by hydraulic-mechanical coupling or electromechanical systems, we novelly combine independent active and passive hydraulic subsystems to solve the incompatibility between low passive friction and high transmission ratio of current semi-active knees. The HSAK not only has the low friction to follow the intentions of users, but also performs adequate torque output.

View Article and Find Full Text PDF

Human finger joints are conventionally simplified as rigid joints in robotic hand design and biomechanical hand modelling, due to their anatomic and morphologic complexity. However, our understanding of the effect of the finger joint configuration on the resulting hand performance is still primitive. In this study, we systematically investigate the grasping performance of the hands with the conventional rigid joints and the biomechanical flexible joints based on a computational human hand model.

View Article and Find Full Text PDF

Understanding the distinct functions of human muscles could not only help professionals obtain insights into the underlying mechanisms that we accommodate compromised neuromuscular system, but also assist engineers in developing rehabilitation devices. This study aims to determine the contribution of major muscle and the energy flow in the human musculoskeletal system at four sub-phases (collision, rebound, preload, push-off) during the stance of walking at different speeds. Gait experiments were performed with three self-selected speeds: slow, normal, and fast.

View Article and Find Full Text PDF

Prosthetic knees are state-of-the-art medical devices that use mechanical mechanisms and components to simulate the normal biological knee function for individuals with transfemoral amputation. A large variety of complicated mechanical mechanisms and components have been employed; however, they lack clear relevance to the walking biomechanics of users in the design process. This article aims to bridge this knowledge gap by providing a review of prosthetic knees from a biomechanical perspective and includes stance stability, early-stance flexion and swing resistance, which directly relate the mechanical mechanisms to the perceived walking performance, i.

View Article and Find Full Text PDF

First order cutaneous neurons allow object recognition, texture discrimination, and sensorimotor feedback. Their function is well-investigated under passive stimulation while their role during active touch or sensorimotor control is understudied. To understand how human perception and sensorimotor controlling strategy depend on cutaneous neural signals under active tactile exploration, the finite element (FE) hand and Izhikevich neural dynamic model were combined to predict the cutaneous neural dynamics and the resulting perception during a discrimination test.

View Article and Find Full Text PDF

Most researchers have performed finite element (FE) analysis of the human forearm fracture by exploring the strength and load transmission of the bones. However, few studies concentrated a complete simulation of the whole forearm complex including ligaments. This paper aims to investigate the load transmission through the bones, contact stress at the joints and strain in the ligaments by using an elaborate FE model, further validating the fracture condition for human forearm.

View Article and Find Full Text PDF

The level of joint laxity, which is an indicator of accurate diagnosis for musculoskeletal conditions is manually determined by a physician. Studying joint laxity via artificial joints is an efficient and economical way to improve patient experience and joint proficiency. However, most of study focus on the joint geometry but are inadequate with regard to the tailored mechanical properties of soft tissues.

View Article and Find Full Text PDF

Quantifying the effect of routing and topology of the inter-connected finger extensor mechanism on hand grasping performances is a long-standing research problem for the better clinical diagnosis, surgical planning and biomimetic hand development. However, it is technically demanding to measure the hand performance parameters such as the contact forces and contact area during hand manipulation. It is also difficult to replicate human hand performance through the physical hand model due to its sophisticated musculotendinous structure.

View Article and Find Full Text PDF

Flexible ureteroscopy (FURS) has been developed and has become a preferred routine procedure for both diagnosis and treatment of kidney stones and other renal diseases inside the urinary tract. The traditional manual FURS procedure is highly skill-demanding and easily brings about physical fatigue and burnout for surgeons. The improper operational ergonomics and fragile instruments also hinder its further development and patient safety enhancement.

View Article and Find Full Text PDF

Humans and animals can achieve agile and efficient movements because the muscle can operate in different modes depending on its intrinsic mechanical properties. For bioinspired robotics and prosthetics, it is highly desirable to have artificial actuators with muscle-like properties. However, it still remains a challenge to realize both intrinsic muscle-like force-velocity and force-length properties in one single actuator simultaneously.

View Article and Find Full Text PDF

Organisms in nature grow with senses, nervous, and actuation systems coordinated in ingenious ways to sustain metabolism and other essential life activities. The understanding of biological structures and functions guide the construction of soft robotics with unprecedented performances. However, despite the progress in soft robotics, there still remains a big gap between man-made soft robotics and natural lives in terms of autonomy, adaptability, self-repair, durability, energy efficiency, etc.

View Article and Find Full Text PDF

During human walking, mechanical energy transfers between segments joints. Joint mechanics of the human body are coordinated with each other to adapt to speed change. The aim of this study is to analyze the functional behaviors of major joints during walking, and how joints and segments alter walking speed during different periods (collision, rebound, preload, and push-off) of stance phase.

View Article and Find Full Text PDF

This paper aims to further our previous study to investigate the effect of speed on the human metatarsophalangeal (MP) joint kinematics during running on level ground. The 3D motion of the foot segments was captured by a twelve-camera motion analysis system, and the ground reaction forces and moments were recorded by using a six-force plate array. The relative movement between the tarsometatarsi (hindfoot) and phalanges (forefoot) segments were recorded to obtain the 3D orientation and position of the functional axis (FA) of the MP joint.

View Article and Find Full Text PDF

This paper presents a low-cost, efficient, and portable method for identifying axes of rotation of the proximal interphalangeal and distal interphalangeal joints in an index finger. The approach is associated with the screw displacement representation of rigid body motion. Using the matrix exponential method, a detailed derivation of general spatial displacement of a rigid body in the form of screw displacement including the Rodrigues' formulae for rotation is presented.

View Article and Find Full Text PDF

Wearable sensor technologies, especially continuous monitoring of various human health conditions, are attracting increased attention. However, current rigid sensors present obvious drawbacks, like lower durability and poor comfort. Here, a strategy is proposed to efficiently yield wearable sensors using cotton fabric as an essential component, and conductive materials conformally coat onto the cotton fibers, leading to a highly electrically conductive interconnecting network.

View Article and Find Full Text PDF

This paper aims to develop and validate a subject-specific framework for modelling the human hand. This was achieved by combining medical image-based finite element modelling, individualized muscle force and kinematic measurements. Firstly, a subject-specific human hand finite element (FE) model was developed.

View Article and Find Full Text PDF

Electromyography (EMG) devices are well-suited for measuring the behaviour of muscles during an exercise or a task, and are widely used in many different research areas. Their disadvantage is that commercial systems are expensive. We designed a low-cost EMG system with enough accuracy and reliability to be used in a wide range of possible ways.

View Article and Find Full Text PDF