Despite gut microbiota-derived extracellular vesicles (EVs) serving as pivotal mediators in bacteria-host cell interactions, their potential role in modulating skin inflammation remains poorly understood. Here, we developed strategies for mass production of Parabacteroides goldsteinii-derived outer membrane vesicles (Pg OMVs), commonly known as EVs. We found that orally administered Pg OMVs can reach the colon, traverse the intestinal barrier, and circulate to the inflamed skin of psoriasis-like mice, resulting in reduced epidermal hyperplasia, suppressed infiltration of inflammatory cells in the skin lesions, and effective amelioration of both skin and systemic inflammation.
View Article and Find Full Text PDFJ Photochem Photobiol B
October 2024
Androgenic alopecia (AGA) typically manifests post-puberty, resulting in decreases in hair density, disruptions in the hair growth cycle, and alterations in hair follicle micro structure. Dihydrotestosterone (DHT) is a key hormone implicated in hair loss, especially on male. In this study, we found that each of arginine (Arg), arterial extract (AE) or biotin tripeptide-1 (BT-1), when combined with low level light therapy (LLLT, at 630 nm, 2 J/cm), showed the efficacy in enhancing mitochondrial functions, cell proliferation and collagen synthesis in fibroblasts.
View Article and Find Full Text PDFLsSAT2 (serine acetyltransferase in ) is the rate-limiting enzyme in biosynthesis of β--oxalyl-l-α,β-diaminopropionic acid (β-ODAP), a neuroactive metabolite distributed widely in several plant species including , , and . The enzymatic activity of LsSAT2 is post-translationally regulated by its involvement in the cysteine regulatory complex in mitochondria via interaction with β-CAS (β-cyanoalanine synthase). In this study, the binding sites of LsSAT2 with the substrate Ser were first determined as Glu, Arg, and His and the catalytic sites were determined as Asp, Asp, and His via site-directed/truncated mutagenesis, in vitro enzymatic activity assay, and functional complementation of the SAT-deficient strain JM39.
View Article and Find Full Text PDFIn red-fleshed kiwifruit, anthocyanin pigmentation is a crucial commercial trait. The MYB-bHLH-WD40 (MBW) complex and other transcription factors regulate its accumulation. Herein, a new SEP gene, , was identified as a regulatory candidate for anthocyanin biosynthesis in the kiwifruit by transcriptome data and bioinformatic analyses.
View Article and Find Full Text PDFThe development of yellow color is an important aspect of fruit quality in yellow fleshed kiwifruit during fruit ripening, and it has a large influence on consumer preference. The yellow color is determined by carotenoid accumulation and chlorophyll degradation and is likely affected by ethylene production. This study investigates the expression of carotenoid, chlorophyll degradation, and ethylene response factors in 'Qihong' fruit, which had reached the near ripening stage (firmness ≈ 20 N) and were either left untreated (controls) or treated with 0.
View Article and Find Full Text PDFThe anthocyanin synthetic pathway is regulated centrally by an MYB-bHLH-WD40 (MBW) complex. Anthocyanin pigmentation is an important fruit quality trait in red-fleshed kiwifruit; however, the underlying regulatory mechanisms involving the MBW complex are not well understood. In this study, one R2R3MYB ( expressed in fruit characteristically), one bHLH (), two upstream regulators of ( and ), and one WDR () are characterized as being involved in the regulation of anthocyanin synthesis in kiwifruit.
View Article and Find Full Text PDFThe standard gas-phase enthalpies of formation of polychlorinated naphthalenes (PCNs) have been predicted using G3X model chemistry, density functional theory (DFT), and second-order Muller-Plesset (MP2) theory. Two isodesmic reactions are used for better prediction of formation enthalpies. The first (IR1) employs chlorobenzene as a reference species and the second (IR2) employs polychlorinated benzenes as reference species.
View Article and Find Full Text PDF