Cancer development is thought to be closely related to aberrant epigenetic regulation, aberrant expression of specific non-coding RNAs (ncRNAs), and tumor microenvironment (TME). The m6A methylation is one of the most abundant RNA modifications found in eukaryotes, and it can determine the fate of RNA at the post-transcriptional level through a variety of mechanisms, which affects important biological processes in the organism. The m6A methylation modification is involved in RNA processing, regulation of RNA nuclear export or localisation, RNA degradation and RNA translation.
View Article and Find Full Text PDFRegulating the microalgal initial adhesion in biofilm formation is a key approach to address the challenges of attached microalgae cultivation. As a type of phytohormone, Indole-3-acetic acid (IAA) can promote the growth and metabolism of microalgae. However, limited knowledge has been acquired of how IAA can change the initial adhesion of microalgae in biofilm formation.
View Article and Find Full Text PDFIn recent years, tumor immunotherapy, aimed at increasing the activity of immune cells and reducing immunosuppressive effects, has attracted wide attention. Among them, immune checkpoint blocking (ICB) is the most commonly explored therapeutic approach. All approved immune checkpoint inhibitors (ICIs) are clinically effective monoclonal antibodies (mAbs).
View Article and Find Full Text PDFAs an important characteristic of tumor, acidic tumor microenvironment (TME) is closely related to immune escape, invasion, migration and drug resistance of tumor. The acidity of the TME mainly comes from the acidic products produced by the high level of tumor metabolism, such as lactic acid and carbon dioxide. pH regulators such as monocarboxylate transporters (MCTs), carbonic anhydrase IX (CA IX), and Na/H exchange 1 (NHE1) expel protons directly or indirectly from the tumor to maintain the pH balance of tumor cells and create an acidic TME.
View Article and Find Full Text PDFMetabolism is reprogrammed in a variety of cancer cells to ensure their rapid proliferation. Cancer cells prefer to utilize glycolysis to produce energy as well as to provide large amounts of precursors for their division. In this process, cancer cells inhibit the activity of pyruvate dehydrogenase complex (PDC) by upregulating the expression of pyruvate dehydrogenase kinases (PDKs).
View Article and Find Full Text PDFChronic myelogenous leukemia (CML) is a malignant myeloproliferative disease. According to the American Cancer Society's 2021 cancer data report, new cases of CML account for about 15% of all leukemias. CML is generally divided into three stages: chronic phase, accelerated phase, and blast phase.
View Article and Find Full Text PDFIn this study, a 3D porous poly(ε-caprolactone)/polyethylene glycol (PCL/PEG) composite artificial tubular bile duct was fabricated for extrahepatic bile duct regeneration. PCL/PEG composite scaffolds were fabricated by 3D printing, and the molecular structure, mechanical properties, thermal properties, morphology, and biocompatibility were characterized for further application as artificial bile ducts. A bile duct defect model was established in beagle dogs for implantation.
View Article and Find Full Text PDFTumor neovascularization provides abundant nutrients for the occurrence and development of tumors, and is also an important factor in tumor invasion and metastasis, which has attracted extensive attention in anti-tumor therapy. Sorafenib is a clinically approved multi-targeted anti-tumor drug that targets vascular endothelial growth factor receptor (VEGFR) and inhibits the formation of tumor angiogenesis, thereby achieving the purpose of suppressing tumor growth. Since the approval of sorafenib, ,'-diarylureas have received extensive attention as the key pharmacophore in its chemical structure.
View Article and Find Full Text PDFSimultaneous inhibition of tumor vasculature and the glycolysis pathway may be a targeted anti-tumor strategy to inhibit tumor nutrient supply. Flavonoids are natural products with strong biological activity, which inhibit hypoxia induction factor 1α (HIF-1α) regulating glycolysis and tumor angiogenesis, while salicylic acid can reduce the glycolysis level of tumor cells by inhibiting related rate-limiting enzymes. A series of salicylic acid-modified indole trimethoxy-flavone derivatives were designed and synthesized by introducing benzotrimethoxy-structure commonly used in blood vessel blockers, and their anti-tumor activities were evaluated.
View Article and Find Full Text PDFZinc depletion is associated with alcohol-associated liver injury. We tested the hypothesis that increasing zinc availability along with alcohol consumption prevents alcohol-associated liver injury. Zinc-glutathione (ZnGSH) was synthesized and directly added to Chinese Baijiu.
View Article and Find Full Text PDFGenerally, hypoxia-inducible factor-1α (HIF-1α) is highly expressed in solid tumors, it plays a key role in the occurrence and development of tumors, hindering cancer treatment in various ways. The antitumor activity and pharmacological mechanism of YC-1 [3-(5'-hydroxymethyl-2'-furyl)-1‑benzyl indazole], an HIF-1α inhibitor, and the design and synthesis of its derivatives have attracted tremendous attention in the field of antitumor research. YC-1 is a potential drug candidate and a lead compound for tumor therapy.
View Article and Find Full Text PDFSimultaneous targeting of tumor vasculature and inhibitors of tumor cell glycolysis may be a promising antitumor strategy. Here, we reported the total synthesis and biological evaluation of A-ring arylurea flavonoid derivatives with B-ring trimethoxy group, which exhibited potent antitumor activity against a variety of tumor cells in vitro. Most of the derivatives showed in vitro antitumor activity on HepG-2, HGC-27, MDA-MB-231, and A549 cells.
View Article and Find Full Text PDFCurcumin is a potential plant-derived drug for the treatment of breast cancer. Poor solubility and bioavailability are the main factors that limit its clinical application. Various structural modification strategies have been developed to improve the anti-breast cancer activity of curcumin.
View Article and Find Full Text PDFFragment-based drug discovery, as a complementary method to traditional screening, has a broad momentum of development in academia, as well as large pharmaceutical companies and biotechnology laboratories. It is used to select favorable combinations of fragments or extend new drug molecules to obtain highly active drug candidates. The strategies used to develop active molecules from fragments are usually three approaches: growth, ligation and incorporation, where the ligation approach provides a theoretical opportunity for rapid access to binding energy.
View Article and Find Full Text PDFMini Rev Med Chem
April 2022
Unlabelled: The article has been withdrawn at the request of the authors of the journal Mini-reviews in Medicinal Chemistry due to incoherent content. Bentham Science apologizes to the readers of the journal for any inconvenience this may have caused. The Bentham Editorial Policy on Article Withdrawal can be found at https://benthamscience.
View Article and Find Full Text PDFMini Rev Med Chem
September 2022
Poly (ADP-ribose) polymerase-1 (PARP-1) is a multifunctional protein that plays an important role in DNA repair and genome integrity. PARP-1 inhibitors can be used as effective drugs not only to treat BRCA-1/2 deficient cancers because of the synthetic lethality effect but also to treat non- BRCA1/2 deficient tumours because of the effect of PARP capture. Therefore, PARP inhibitors have become a focus of compelling research.
View Article and Find Full Text PDFWith the development of exploration for disease-related proteins or receptors, more and more novel structural lead compounds are required to designed and synthesized. The benzimidazole is an effective structural unit in which the benzene ring is fused at the 4 and 5 positions of the imidazole ring and wildly used in drug design. Here, we introduce some recent progress of research for anti-tumor agents which was target to various target proteins such as DNA topoisomerase, angiogenesis, serine/threonine protein kinase, and tyrosine protein kinase.
View Article and Find Full Text PDFAlthough 1H-benzo[d]imidazole-4-carboxamide derivatives have been explored for a long time, the structure-activity relationship of the substituents in the hydrophobic pocket (AD binding sites) has not thoroughly discovered. Here in, a series of 2-(4-[4-acetylpiperazine-1-carbonyl]phenyl)-1H-benzo[d]imidazole-4-carboxamide derivatives have been designed, synthesized, and successful characterization as novel and effective poly ADP-ribose polymerases (PARP)-1 inhibitors to improve the structure-activity relationships about the substituents in the hydrophobic pocket. These derivatives were evaluated for their PARP-1 inhibitory activity and cellular inhibitory against BRCA-1 deficient cells (MDA-MB-436) and wild cells (MCF-7) using PARP kit assay and MTT method.
View Article and Find Full Text PDFTumor cells mainly provide necessary energy and substances for rapid cell growth through aerobic perglycolysis rather than oxidative phosphorylation. This phenomenon is called the "Warburg effect". The mechanism of glycolysis in tumor cells is more complicated, which is caused by the comprehensive regulation of multiple factors.
View Article and Find Full Text PDFGlobally, there were over 1 million new gastric cancer (GC) patients in 2018 and GC has become the sixth most common cancer worldwide. GC caused 783,000 deaths worldwide in 2018, making it the third most deadly cancer type. miRNAs are short (~22 nucleotides in length) non‑coding RNA molecules, which can regulate gene expression passively at a post‑transcriptional level.
View Article and Find Full Text PDFA series of compounds bearing 3',4',5'-trimethoxy module into the core structure of evodiamine were designed and synthesized. The synthesized compounds were screened in vitro for their antitumor potential. MTT results showed that compounds 14a-14c and 14i-14j had significant effects, with compound 14h being the most prominent, with an IC value of 3.
View Article and Find Full Text PDFBCR-ABL is a gene produced by the fusion of the bcr gene and the c-abl proto-oncogene and is considered to be the main cause of chronic myelogenous leukemia (CML) production. Therefore, the development of selective Bcr-Abl kinase inhibitors is an attractive strategy for the treatment of CML. However, in the treatment of CML with a Bcr-Abl kinase inhibitor, the T315I gatekeeper mutant disrupts the important contact interaction between the inhibitor and the enzyme, resistant to the first- and second-generation drugs currently approved, such as imatinib, bosutinib, nilotinib, and dasatinib.
View Article and Find Full Text PDFE-DRS is a novel salvianolic acid A (SAA) analog, which was synthesized from resveratrol (RES) and methyldopate. Its structure is similar to that of SAA, but the 3',4'-dihydroxy-trans-stilbene group and the ester structure in SAA were replaced by the RES structure and an amine group, respectively. E-DRS scavenged free oxygen radicals effectively, including superoxide anion (ascorbic acid > E-DRS > SAA ≥ rutin > RES) and DPPH radical (rutin > E-DRS ≥ ascorbic acid > SAA > RES), and exhibited powerful total antioxidant capacity (ascorbic acid > E-DRS > SAA ≥ rutin > RES) in vitro.
View Article and Find Full Text PDF