T cell activation is associated with a profound and rapid metabolic response to meet increased energy demands for cell division, differentiation and development of effector function. Glucose uptake and engagement of the glycolytic pathway are major checkpoints for this event. Here we show that the low-affinity, concentration-dependent glucose transporter 2 (Glut2) regulates the development of CD8 T cell effector responses in mice by promoting glucose uptake, glycolysis and glucose storage.
View Article and Find Full Text PDFBackground: Autoimmunity is increasingly recognized as a key contributing factor in heart muscle diseases. The functional features of cardiac autoimmunity in humans remain undefined because of the challenge of studying immune responses in situ. We previously described a subset of c-mesenchymal epithelial transition factor (c-Met)-expressing (c-Met) memory T lymphocytes that preferentially migrate to cardiac tissue in mice and humans.
View Article and Find Full Text PDFVoltage-gated hydrogen channel 1 (Hvcn1) is a voltage-gated proton channel, which reduces cytosol acidification and facilitates the production of ROS. The increased expression of this channel in some cancers has led to proposing Hvcn1 antagonists as potential therapeutics. While its role in most leukocytes has been studied in depth, the function of Hvcn1 in T cells remains poorly defined.
View Article and Find Full Text PDFEndothelial barrier (EB) breaching is a frequent event during inflammation, and it is followed by the rapid recovery of microvascular integrity. The molecular mechanisms of EB recovery are poorly understood. Triggering of MHC molecules by migrating T-cells is a minimal signal capable of inducing endothelial contraction and transient microvascular leakage.
View Article and Find Full Text PDFProtective immunity relies upon differentiation of T cells into the appropriate subtype required to clear infections and efficient effector T cell localization to antigen-rich tissue. Recent studies have highlighted the role played by subpopulations of tissue-resident memory (T) T lymphocytes in the protection from invading pathogens. The intestinal mucosa and associated lymphoid tissue are densely populated by a variety of resident lymphocyte populations, including αβ and γδ CD8 intraepithelial T lymphocytes (IELs) and CD4 T cells.
View Article and Find Full Text PDFCholesterol homeostasis has a pivotal function in regulating immune cells. Here we show that apolipoprotein E (apoE) deficiency leads to the accumulation of cholesterol in the cell membrane of dendritic cells (DC), resulting in enhanced MHC-II-dependent antigen presentation and CD4 T-cell activation. Results from WT and apoE KO bone marrow chimera suggest that apoE from cells of hematopoietic origin has immunomodulatory functions, regardless of the onset of hypercholesterolemia.
View Article and Find Full Text PDFMigration of activated regulatory T (Treg) cells to inflamed tissue is crucial for their immune-modulatory function. While metabolic reprogramming during Treg cell differentiation has been extensively studied, the bioenergetics of Treg cell trafficking remains undefined. We have investigated the metabolic demands of migrating Treg cells in vitro and in vivo.
View Article and Find Full Text PDFObjective: To investigate the molecular cause of persistent fevers in a patient returning from working overseas, in whom investigations for tropical diseases yielded negative results.
Methods: DNA was extracted from the patient's whole blood, leukocyte subpopulations, saliva, hair root, and sperm. The TNFRSF1A gene was analyzed by polymerase chain reaction (PCR), allele-specific PCR, Sanger sequencing, and next-generation sequencing.
Proc Natl Acad Sci U S A
October 2015
Constitutive resistance to cell death induced by inflammatory stimuli activating the extrinsic pathway of apoptosis is a key feature of vascular endothelial cells (ECs). Although this property is central to the maintenance of the endothelial barrier during inflammation, the molecular mechanisms of EC protection from cell-extrinsic, proapoptotic stimuli have not been investigated. We show that the Ig-family member CD31, which is expressed by endothelial but not epithelial cells, is necessary to prevent EC death induced by TNF-α and cytotoxic T lymphocytes in vitro.
View Article and Find Full Text PDFEffector-T-cell-mediated immunity depends on the efficient localization of antigen-primed lymphocytes to antigen-rich non-lymphoid tissue, which is facilitated by the expression of a unique set of "homing" receptors acquired by memory T cells. We report that engagement of the hepatocyte growth factor (HGF) receptor c-Met by heart-produced HGF during priming in the lymph nodes instructs T cell cardiotropism, which was associated with a specialized homing "signature" (c-Met(+)CCR4(+)CXCR3(+)). c-Met signals facilitated T cell recruitment to the heart via the chemokine receptor CCR5 by inducing autocrine CCR5 ligand release.
View Article and Find Full Text PDFLocalization of CD4(+)CD25(+)Foxp3(+) regulatory T (Treg) cells to lymphoid and non-lymphoid tissue is instrumental for the effective control of immune responses. Compared with conventional T cells, Treg cells constitute a minute fraction of the T-cell repertoire. Despite this numeric disadvantage, Tregs efficiently migrate to sites of immune responses reaching an optimal number for the regulation of T effector (Teff) cells.
View Article and Find Full Text PDFImportance: Our study indicates a prototype blood-based variant Creutzfeldt-Jakob disease (vCJD) assay has sufficient sensitivity and specificity to justify a large study comparing vCJD prevalence in the United Kingdom with a bovine spongiform encephalopathy-unexposed population. In a clinical diagnostic capacity, the assay's likelihood ratios dramatically change an individual's pretest disease odds to posttest probabilities and can confirm vCJD infection.
Objectives: To determine the diagnostic accuracy of a prototype blood test for vCJD and hence its suitability for clinical use and for screening prion-exposed populations.
Background: The balance between endothelial injury and repair in childhood is poorly understood. We examined this relationship in healthy children, in adults, and in children with familial hypercholesterolemia (FH).
Methods: Circulating endothelial cells (CECs) were measured as a marker of vascular injury, with vascular repair assessed by counting colony-forming units (CFUs), also known as endothelial progenitor cells.
Context: Accelerated atherosclerosis has been described in antiphospholipid syndrome, but the vascular abnormalities and the underlying mechanisms remain unclear.
Objectives: To compare vascular structure and function in patients with positive antiphospholipid antibodies (aPL) with controls and to assess their relationship with paraoxonase activity.
Design, Setting, And Participants: A cross-sectional study of 77 women with positive antiphospholipid antibodies from a lupus outpatient clinic in London, England (90% of the eligible population) and 77 controls matched on frequency basis for age and cardiovascular risk factors between June 2006 and April 2009.
The platelet-lowering drug anagrelide inhibits bone marrow megakaryocytopoiesis by an unknown mechanism. Recently, it was found that anagrelide is bio-transformed in humans into two major metabolites (6,7-dichloro-3-hydroxy-1,5 dihydro-imidazo[2,1-b]quinazolin-2-one (BCH24426) and 2-amino-5,6-dichloro-3,4,-dihydroquinazoline (RL603). Whether these metabolites have biological activities that may underlie the mode of action of the parent drug is presently unclear.
View Article and Find Full Text PDF