Autotetraploid rice is a useful germplasm for polyploid rice breeding in improving nutritional values. Nevertheless, underlying mechanism of starch and lipid accumulation in tetraploid rice caryopsis remains largely unknown. Here, regulatory mode of starch and triacylglycerol (TAG) synthesis during grain-filling stage in diploid and tetraploid indica rice varieties 9311 was investigated.
View Article and Find Full Text PDFThe formation of rice aroma is a complex process that is influenced by genetic and environmental factors. More than 500 fragrance compounds have been documented in fragrant rice, among which 2-AP dominates the aroma of rice. This paper introduced the identification of OsBadh2 in the biosynthesis of 2-AP in rice.
View Article and Find Full Text PDFBackground: Postoperative rehabilitation programs consisting of exercise training are considered effective for unselected lung cancer patients. However, whether postoperative exercise is beneficial to lung cancer patients comorbid with chronic obstructive pulmonary disease remains unknown.
Methods: Eighty-four patients diagnosed with both lung cancer and chronic obstructive pulmonary disease were randomized into the exercise group and control group.
Low-temperature sensitivity at the germination stage is a challenge for direct seeding of rice in Asian countries. How Ca2+ and auxin (IAA) signaling regulate primary root growth under chilling remains unexplored. Here, we showed that OsCML16 interacted specifically with OsPILS7a to improve primary root elongation of early rice seedlings under chilling.
View Article and Find Full Text PDFLipocalins constitute a conserved protein family that binds to and transports a variety of lipids while fatty acid desaturases (FADs) are required for maintaining the cell membrane fluidity under cold stress. Nevertheless, it remains unclear whether plant lipocalins promote FADs for the cell membrane integrity under cold stress. Here, we identified the role of OsTIL1 lipocalin in FADs-mediated glycerolipid remodeling under cold stress.
View Article and Find Full Text PDFPlastoglobules (PGs) contiguous with the outer leaflets of thylakoid membranes regulate lipid metabolism, plastid developmental transitions, and responses to environmental stimuli. However, the function of OsFBN7, a PG-core fibrillin gene in rice, has not been elucidated. Using molecular genetics and physiobiochemical approaches, we observed that OsFBN7 overexpression promoted PG clustering in rice chloroplasts.
View Article and Find Full Text PDFRice (Oryza sativa L.) is a chilling-sensitive staple food crop, and thus, low temperature significantly affects rice growth and yield. Many studies have focused on the cold shock of rice although chilling acclimation is more likely to happen in the field.
View Article and Find Full Text PDFAssociated analysis of GWAS with RNA-seq had detected candidate genes responsible for cold stress and chilling acclimation in rice. Haplotypes of two candidate genes and geographic distribution were analyzed. To explore new candidate genes and genetic resources for cold tolerance improvement in rice, genome-wide association study (GWAS) mapping experiments with 351 rice core germplasms was performed for three traits (survival rate, shoot length and chlorophyll content) under three temperature conditions (normal temperature, cold stress and chilling acclimation), yielding a total of 134 QTLs, of which 54, 59 and 21 QTLs were responsible for normal temperature, cold stress and chilling acclimation conditions, respectively.
View Article and Find Full Text PDFBackground: Chronic obstructive pulmonary diseases (COPD) affects 45%-63% of lung cancer patients worldwide. Lung cancer patients complicated with COPD have decreased cardiopulmonary function and increased perioperative risk, and their postoperative exercise endurance and lung function are significantly lower than those with conventional lung cancer. Previous studies have shown that postoperative exercise training can improve the exercise endurance of unselected lung cancer patients, but it is unclear whether lung cancer patients with COPD can also benefit from postoperative exercise training.
View Article and Find Full Text PDFOsVDE, a lipocalin-like protein in chloroplasts, negatively regulated the ABA biosynthesis and stomatal closure under salt stress in rice seedlings. Violaxanthin de-epoxidase (VDE) is a key enzyme of xanthophyll cycle. It plays a critical role in abscisic acid (ABA) biosynthesis, growth and stress responses in plants.
View Article and Find Full Text PDFBcl-2-associated athanogene (BAG), a group of proteins evolutionarily conserved and functioned as co-chaperones in plants and animals, is involved in various cell activities and diverse physiological processes. However, the biological functions of this gene family in rice are largely unknown. In this study, we identified a total of six BAG members in rice.
View Article and Find Full Text PDFCold stress, including freezing stress and chilling stress, is one of the major environmental factors that limit the growth and productivity of plants. As a temperate dicot model plant species, develops a capability to freezing tolerance through cold acclimation. The past decades have witnessed a deep understanding of mechanisms underlying cold stress signal perception, transduction, and freezing tolerance in Arabidopsis.
View Article and Find Full Text PDFSemi-dwarfism is a main agronomic trait in crop breeding. In this study, we performed genome-wide association study (GWAS) and identified a new quantitative trait nucleotide (QTN) for rice shoot length. The peak QTN (C/T) was located in the first coding region of a group III WRKY transcription factor (LOC_Os01g60640).
View Article and Find Full Text PDFCa2+/calmodulin (CaM)-dependent protein kinases (CCaMKs) and mitogen-activated protein kinase kinases (MAPKKs) are two types of kinases that regulate salt stress response in plants. It remains unclear, however, how they cooperatively affect lateral root growth under salt stress. Here, two conserved phosphorylation sites (S102 and T118) of OsCaM1 were identified, and found to affect the ability to bind to Ca2+in vitro and the kinase activity of OsCCaMK in vivo.
View Article and Find Full Text PDFSeed storability is a main agronomically important trait to assure storage safety of grain and seeds in rice. Although many quantitative trait loci (QTLs) and associated genes for rice seed storability have been identified, the detailed genetic mechanisms of seed storability remain unclear in rice. In this study, a genome-wide association study (GWAS) was performed in 456 diverse rice core collections from the 3K rice genome.
View Article and Find Full Text PDFWheat is a major food crop worldwide. The plant architecture is a complex trait mostly influenced by plant height, tiller number, and leaf morphology. Plant height plays a crucial role in lodging and thus affects yield and grain quality.
View Article and Find Full Text PDFCaleosins constitute a small protein family with one calcium-binding EF-hand motif. They are involved in the regulation of development and response to abiotic stress in plants. Nevertheless, how they impact salt stress tolerance in rice is largely unknown.
View Article and Find Full Text PDFKernel morphology is one of the major yield traits of wheat, the genetic architecture of which is always important in crop breeding. In this study, we performed a genome-wide association study (GWAS) to appraise the genetic architecture of the kernel traits of 319 wheat accessions using 22,905 single nucleotide polymorphism (SNP) markers from a wheat 90K SNP array. As a result, 111 and 104 significant SNPs for Kernel traits were detected using four multi-locus GWAS models (mrMLM, FASTmrMLM, FASTmrEMMA, and pLARmEB) and three single-locus models (FarmCPU, MLM, and MLMM), respectively.
View Article and Find Full Text PDFCalmodulin-like proteins (CMLs) have been shown to play key regulatory roles in calcium signaling in plants. However, few bona-fide CMLs binding proteins have been characterized in rice, a monocot model plant. Here, through large-scale screening of a yeast-two hybrid (Y2H) cDNA library with OsCML16 as a bait, six new putative interacting partners of OsCML16 were discovered and confirmed by both pairwise Y2H and bimolecular fluorescence complementation (BiFC) assays.
View Article and Find Full Text PDFFibrillins (FBNs) constitute a plastid-lipid-associated protein family that plays a role in chloroplast development, lipids metabolism and stress responses in plants. Until now, FBNs have been functionally characterized in stability of thylakoid and responses to the different stress stimuli. Consequently, phylogeny, domain composition and structural features of 121 FBNs family proteins from ten representative species have been identified.
View Article and Find Full Text PDFUDP-glucose epimerases (UGEs) are essential enzymes for catalysing the conversion of UDP-glucose (UDP-Glc) into UDP-galactose (UDP-Gal). Although UDP-Gal has been well studied as the substrate for the biosynthesis of carbohydrates, glycolipids, and glycoproteins, much remains unknown about the biological function of UGEs in plants. In this study, we selected a novel rice fragile culm 24 (Osfc24) mutant and identified it as a nonsense mutation of the FC24/OsUGE2 gene.
View Article and Find Full Text PDFCalcium-dependent protein kinases (CDPKs) are important calcium signaling components that have been shown to play crucial roles in modulating plant abiotic stress responses. However, the physiological and regulatory roles of most CDPKs are still poorly understood. Here, we report the functional characterization of PtrCDPK10 from trifoliate orange (Poncirus trifoliata (L.
View Article and Find Full Text PDFIn higher plants, Fibrillins (FBNs) constitute a conserved plastid-lipid-associated (PAPs) protein family and modulate the metabolite transport and lipid metabolism in plastids of dicot species. However, FBNs have not functionally characterized in monocot species. In this study, the function of rice fibrillin 1 (OsFBN1) was investigated.
View Article and Find Full Text PDFBackground: Genetic modification of plant cell walls has been implemented to reduce lignocellulosic recalcitrance for biofuel production. Plant glycoside hydrolase family 9 (GH9) comprises endo-β-1,4-glucanase in plants. Few studies have examined the roles of GH9 in cell wall modification.
View Article and Find Full Text PDF