Botulinum neurotoxin E (BoNT/E) is one of the major causes of human botulism and paradoxically also a promising therapeutic agent. Here we determined the co-crystal structures of the receptor-binding domain of BoNT/E (HE) in complex with its neuronal receptor synaptic vesicle glycoprotein 2A (SV2A) and a nanobody that serves as a ganglioside surrogate. These structures reveal that the protein-protein interactions between HE and SV2 provide the crucial location and specificity information for HE to recognize SV2A and SV2B, but not the closely related SV2C.
View Article and Find Full Text PDFBotulinum neurotoxins (BoNTs) are causative agents of the life-threatening disease botulism. They are naturally produced by species of the bacteria Clostridium botulinum as stable and non-covalent complexes, in which the BoNT molecule is assembled with several auxiliary non-toxic proteins. Some BoNT serotypes, represented by the well-studied BoNT serotype A (BoNT/A), are produced by Clostridium strains that carry the ha gene cluster, which encodes four neurotoxin-associated proteins (NTNHA, HA17, HA33, and HA70) that play an important role to deliver and protect BoNTs in the gastrointestinal tract during oral intoxication.
View Article and Find Full Text PDFDe novo protein design holds promise for creating small stable proteins with shapes customized to bind therapeutic targets. We describe a massively parallel approach for designing, manufacturing and screening mini-protein binders, integrating large-scale computational design, oligonucleotide synthesis, yeast display screening and next-generation sequencing. We designed and tested 22,660 mini-proteins of 37-43 residues that target influenza haemagglutinin and botulinum neurotoxin B, along with 6,286 control sequences to probe contributions to folding and binding, and identified 2,618 high-affinity binders.
View Article and Find Full Text PDFAntibody treatment is currently the only available countermeasure for botulism, a fatal illness caused by flaccid paralysis of muscles due to botulinum neurotoxin (BoNT) intoxication. Among the seven major serotypes of BoNT/A-G, BoNT/A poses the most serious threat to humans because of its high potency and long duration of action. Prior to entering neurons and blocking neurotransmitter release, BoNT/A recognizes motoneurons via a dual-receptor binding process in which it engages both the neuron surface polysialoganglioside (PSG) and synaptic vesicle glycoprotein 2 (SV2).
View Article and Find Full Text PDFBotulinum neurotoxins (BoNTs), which have been exploited as cosmetics and muscle-disorder treatment medicines for decades, are well known for their extreme neurotoxicity to humans. They pose a potential bioterrorism threat because they cause botulism, a flaccid muscular paralysis-associated disease that requires immediate antitoxin treatment and intensive care over a long period of time. In addition to the existing seven established BoNT serotypes (BoNT/A-G), a new mosaic toxin type termed BoNT/HA (aka type FA or H) was reported recently.
View Article and Find Full Text PDFBotulinum neurotoxin serotype A1 (BoNT/A1), a licensed drug widely used for medical and cosmetic applications, exerts its action by invading motoneurons. Here we report a 2.0-Å-resolution crystal structure of the BoNT/A1 receptor-binding domain in complex with its neuronal receptor, glycosylated human SV2C.
View Article and Find Full Text PDFProg Biophys Mol Biol
March 2015
Botulinum neurotoxins (BoNTs) are among the most deadly toxins known. They act rapidly in a highly specific manner to block neurotransmitter release by cleaving the soluble N-ethylmaleimide sensitive factor attachment protein receptor (SNARE) complex at neuromuscular junctions. The extreme toxicity of BoNTs relies predominantly on their neurotropism that is accomplished by recognition of two host receptors, a polysialo-ganglioside and in the majority of cases a synaptic vesicle protein, through their receptor-binding domains.
View Article and Find Full Text PDFBotulinum neurotoxins (BoNTs) are potent bacterial toxins. The high oral toxicity of BoNTs is largely attributed to the progenitor toxin complex (PTC), which is assembled from BoNT and nontoxic neurotoxin-associated proteins (NAPs) that are produced together with BoNT in bacteria. Here, we performed ex vivo studies to examine binding of the highly homogeneous recombinant NAPs to mouse small intestine.
View Article and Find Full Text PDFBotulinum neurotoxins (BoNTs) are produced by Clostridium botulinum and cause the fatal disease botulism, a flaccid paralysis of the muscle. BoNTs are released together with several auxiliary proteins as progenitor toxin complexes (PTCs) to become highly potent oral poisons. Here, we report the structure of a ∼760 kDa 14-subunit large PTC of serotype A (L-PTC/A) and reveal insight into its absorption mechanism.
View Article and Find Full Text PDFAlzheimer's disease (AD) is primarily caused by overproduction/deposition of β-amyloid (Aβ) in the brain. Dysregulation of iron in the brain also contributes to AD. Although iron affects β-amyloid precursor protein (APP) expression and Aβ deposition, detailed role of iron in AD requires further elucidation.
View Article and Find Full Text PDFSynapses are the fundamental units of neural circuits that enable complex behaviors. The neuromuscular junction (NMJ), a synapse formed between a motoneuron and a muscle fiber, has contributed greatly to understanding of the general principles of synaptogenesis as well as of neuromuscular disorders. NMJ formation requires neural agrin, a motoneuron-derived protein, which interacts with LRP4 (low-density lipoprotein receptor-related protein 4) to activate the receptor tyrosine kinase MuSK (muscle-specific kinase).
View Article and Find Full Text PDFThe AMPA (α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid) subfamily of iGluRs (ionotropic glutamate receptors) is essential for fast excitatory neurotransmission in the central nervous system. The malfunction of AMPARs (AMPA receptors) has been implicated in many neurological diseases, including Alzheimer's disease, Parkinson's disease and amyotrophic lateral sclerosis. The active channels of AMPARs and other iGluR subfamilies are tetramers formed exclusively by assembly of subunits within the same subfamily.
View Article and Find Full Text PDF