Publications by authors named "Guorui Chen"

A novel living biointerface that integrates living biological and hydrogel systems, can significantly improve monitoring and treatment through enhanced interaction with biological tissues, revolutionizing our chronic inflammation management.

View Article and Find Full Text PDF

Moiré superlattices, constituted by two-dimensional materials, demonstrate a variety of strongly correlated and topological phenomena including correlated insulators, superconductivity, and integer/fractional Chern insulators. In the realm of topological nontrivial Chern insulators within specific moiré superlattices, previous studies usually observe a single Chern number at a given filling factor in a device. Here we present the observation of gate-tunable Chern numbers within the Chern insulator state of an ABC-stacked trilayer graphene/hexagonal boron nitride moiré superlattice device.

View Article and Find Full Text PDF

Brownian motion allows microscopically dispersed nanoparticles to be stable in ferrofluids, as well as causes magnetization relaxation and prohibits permanent magnetism. Here we decoupled the particle Brownian motion from colloidal stability to achieve a permanent fluidic magnet with high magnetization, flowability and reconfigurability. The key to create such permanent fluidic magnets is to maintain a stable magnetic colloidal fluid by using non-Brownian magnetic particles to self-assemble a three-dimensional oriented and ramified magnetic network structure in the carrier fluid.

View Article and Find Full Text PDF

Degeneracies in multilayer graphene, including spin, valley, and layer degrees of freedom, can be lifted by Coulomb interactions, resulting in rich broken-symmetry states. Here, we report a ferromagnetic state in charge-neutral ABCA-tetralayer graphene driven by proximity-induced spin-orbit coupling from adjacent tungsten diselenide. The ferromagnetic state is identified as a Chern insulator with a Chern number of 4; its maximum Hall resistance reaches 78% quantization at zero magnetic field and is fully quantized at either 0.

View Article and Find Full Text PDF

Van der Waals encapsulation of two-dimensional materials in hexagonal boron nitride (hBN) stacks is a promising way to create ultrahigh-performance electronic devices. However, contemporary approaches for achieving van der Waals encapsulation, which involve artificial layer stacking using mechanical transfer techniques, are difficult to control, prone to contamination and unscalable. Here we report the transfer-free direct growth of high-quality graphene nanoribbons (GNRs) in hBN stacks.

View Article and Find Full Text PDF

Future exploitation of marine resources in a sustainable and eco-friendly way requires autonomous underwater robotics with human-like perception. However, the development of such intelligent robots is now impeded by the lack of adequate underwater haptic sensing technology. Inspired by the populational coding strategy of the human tactile system, we harness the giant magnetoelasticity in soft polymer systems as an innovative platform technology to construct a multimodal underwater robotic skin for marine object recognition with intrinsic waterproofness and a simple configuration.

View Article and Find Full Text PDF

Interactions among charge carriers in graphene can lead to the spontaneous breaking of multiple degeneracies. When increasing the number of graphene layers following rhombohedral stacking, the dominant role of Coulomb interactions becomes pronounced due to the significant reduction in kinetic energy. In this study, we employ phonon-polariton-assisted near-field infrared imaging to determine the stacking orders of tetralayer graphene devices.

View Article and Find Full Text PDF

Interfacing molecular machines to inorganic nanoparticles can, in principle, lead to hybrid nanomachines with extended functions. Here we demonstrate a ligand engineering approach to develop atomically precise hybrid nanomachines by interfacing gold nanoclusters with tetraphenylethylene molecular rotors. When gold nanoclusters are irradiated with near-infrared light, the rotation of surface-decorated tetraphenylethylene moieties actively dissipates the absorbed energy to sustain the photothermal nanomachine with an intact structure and steady efficiency.

View Article and Find Full Text PDF

ABC-stacked trilayer graphene on boron nitride (ABC-TLG/hBN) moiré superlattices provides a tunable platform for exploring Wigner crystal states in which the electron correlation can be controlled by electric and magnetic fields. Here we report the observation of magnetic field-stabilized Wigner crystal states in a ABC-TLG/hBN. We show that correlated insulating states emerge at multiple fractional and integer fillings corresponding to ν = /, /, 1, /, /, and 2 electrons per moiré lattice site under a magnetic field.

View Article and Find Full Text PDF

Triboelectric nanogenerators (TENGs) have gained significant traction in recent years in the bioengineering community. With the potential for expansive applications for biomedical use, many individuals and research groups have furthered their studies on the topic, in order to gain an understanding of how TENGs can contribute to healthcare. More specifically, there have been a number of recent studies focusing on implantable triboelectric nanogenerators (I-TENGs) toward self-powered cardiac systems healthcare.

View Article and Find Full Text PDF

Since its outbreak in 2019, COVID-19 becomes a pandemic, severely burdening the public healthcare systems and causing an economic burden. Thus, societies around the world are prioritizing a return to normal. However, fighting the recession could rekindle the pandemic owing to the lightning-fast transmission rate of SARS-CoV-2.

View Article and Find Full Text PDF

Electronic textiles are fundamentally changing the way we live. However, the inability to effectively recycle them is a considerable burden to the environment. In this study, we developed a cotton fiber-based piezoresistive textile (CF p-textile) for biomonitoring which is biocompatible, biodegradable, and environmentally friendly.

View Article and Find Full Text PDF

Polymer-ceramic piezoelectric composites, combining high piezoelectricity and mechanical flexibility, have attracted increasing interest in both academia and industry. However, their piezoelectric activity is largely limited by intrinsically low crystallinity and weak spontaneous polarization. Here, we propose a TiCT MXene anchoring method to manipulate the intermolecular interactions within the all-trans conformation of a polymer matrix.

View Article and Find Full Text PDF

At the forefront of the smart textile community, healthcare and sustainability are the two crucial objectives targeted by researchers. The development of such powerful devices has been driven by innovative fabrications of breathable, skin-conformable technologies through the use of functional and programmable materials and device structures. This Perspective focuses on the current smart textiles available in the research field, categorized into personalized healthcare, including diagnostics and therapeutics, and sustainability, including energy harvesting and conservation─personalized thermoregulation.

View Article and Find Full Text PDF

The current energy crises and imminent danger of global warming severely limit the ability to scale societal development sustainably. As such, there is a pressing need for utilizing renewable, green energy sources, such as wind energy, which is ubiquitously available on Earth. In this work, a fundamentally new wind-energy-harvesting technology is reported, which is based on the giant magnetoelastic effect in a soft composite system, namely, magnetoelastic generators.

View Article and Find Full Text PDF

We discovered a giant magnetoelasticity in soft matter with up to 5-fold enhancement of magnetomechanical coupling factors compared to that of rigid metal alloys without an externally applied magnetic field. A wavy chain analytical model based on the magnetic dipole-dipole interaction and demagnetizing field was established, fitting well to the experimental observation. To explore its potentials in electronic textiles, we coupled it with magnetic induction to invent a textile magnetoelastic generator (MEG), a new working mechanism for biomechanical energy conversion, featuring an intrinsic waterproofness, an ultralow internal impedance of approximately 20 Ω, and a high short-circuit current density of 1.

View Article and Find Full Text PDF

Interfacing with the human body, wearable and implantable bioelectronics are a compelling platform technology for healthcare monitoring and medical therapeutics. However, clinical adoption of these devices is largely shadowed by their weakness in humidity resistance, stretchability, durability, and biocompatibility. In this work, we report a self-powered waterproof biomechanical sensor with stretchability up to 440% using the giant magnetoelastic effect in a soft polymer system.

View Article and Find Full Text PDF

Modifying the wide band gap semiconductor hexagonal boron nitride (hBN) can bring new chances in photonics. By virtue of the solvothermal/hydrothermal oxidation or functionalization, hBN can be converted into fluorescent nanodots. Until now, it has been a big challenge to drily oxidize hBN and turn it into bright fluorescent structures due to its superior chemical stability.

View Article and Find Full Text PDF

The development of flexible piezoelectric nanogenerators has experienced rapid progress in the past decade and is serving as the technological foundation of future state-of-the-art personalized healthcare. Due to their highly efficient mechanical-to-electrical energy conversion, easy implementation, and self-powering nature, these devices permit a plethora of innovative healthcare applications in the space of active sensing, electrical stimulation therapy, as well as passive human biomechanical energy harvesting to third party power on-body devices. This article gives a comprehensive review of the piezoelectric nanogenerators for personalized healthcare.

View Article and Find Full Text PDF

ABC-stacked trilayer graphene/hexagonal boron nitride moiré superlattice (TLG/hBN) has emerged as a playground for correlated electron physics. We report spectroscopy measurements of dual-gated TLG/hBN using Fourier transform infrared photocurrent spectroscopy. We observed a strong optical transition between moiré minibands that narrows continuously as a bandgap is opened by gating, indicating a reduction of the single-particle bandwidth.

View Article and Find Full Text PDF

Electrode microfabrication technologies such as lithography and deposition have been widely applied in wearable electronics to boost interfacial coupling efficiency and device performance. However, a majority of these approaches are restricted by expensive and complicated processing techniques, as well as waste discharge. Here, helium plasma irradiation is employed to yield a molybdenum microstructured electrode, which is constructed into a flexible piezoresistive pressure sensor based on a Ti C T nanosheet-immersed polyurethane sponge.

View Article and Find Full Text PDF

Cardiovascular diseases remain the leading cause of death worldwide. The rapid development of flexible sensing technologies and wearable pressure sensors have attracted keen research interest and have been widely used for long-term and real-time cardiovascular status monitoring. Owing to compelling characteristics, including light weight, wearing comfort, and high sensitivity to pulse pressures, physiological pulse waveforms can be precisely and continuously monitored by flexible pressure sensors for wearable health monitoring.

View Article and Find Full Text PDF

The flat bands resulting from moiré superlattices exhibit fascinating correlated electron phenomena such as correlated insulators, ( 2018, 556 (7699), 80-84), ( 2019, 15 (3), 237) superconductivity, ( 2018, 556 (7699), 43-50), ( 2019, 572 (7768), 215-219) and orbital magnetism. ( 2019, 365 (6453), 605-608), ( 2020, 579 (7797), 56-61), ( 2020, 367 (6480), 900-903) Such magnetism has been observed only at particular integer multiples of , the density corresponding to one electron per moiré superlattice unit cell. Here, we report the experimental observation of ferromagnetism at noninteger filling (NIF) of a flat Chern band in a ABC-TLG/hBN moiré superlattice.

View Article and Find Full Text PDF

Traditional public health systems are suffering from limited, delayed, and inefficient medical services, especially when confronted with the pandemic and the aging population. Fusing traditional textiles with diagnostic, therapeutic, and protective medical devices can unlock electronic textiles (e-textiles) as point-of-care platform technologies on the human body, continuously monitoring vital signs and implementing round-the-clock treatment protocols in close proximity to the patient. This review comprehensively summarizes the research advances on e-textiles for wearable point-of-care systems.

View Article and Find Full Text PDF