Brain metastases (BrMs) and gliomas are two typical human brain tumors with high incidence of mortalities and distinct clinical challenges, yet the understanding of these two types of tumors remains incomplete. Here, a multidimensional proteomic landscape of BrMs and gliomas to infer tumor-specific molecular pathophysiology at both tissue and plasma levels is presented. Tissue sample analysis reveals both shared and distinct characteristics of brain tumors, highlighting significant disparities between BrMs and gliomas with differentially activated upstream pathways of the PI3K-Akt signaling pathway that have been scarcely discussed previously.
View Article and Find Full Text PDFT cell exhaustion, characterized by the upregulation of inhibitory receptors and loss of effector functions, plays a crucial role in tumor immune evasion. This study utilizes a high-throughput, reproducible, and robust integrated ion-exchange chromatography-tandem mass tag (IEC-TMT) platform, coupled with a complex-centric quantification algorithm, to thoroughly profile phosphotyrosine (pTyr) protein complex changes during T cell exhaustion. The platform's high reproducibility is evidenced by >0.
View Article and Find Full Text PDFBiomarker discovery and application are paramount for the early diagnosis, treatment, and prognosis assessment of diseases. Novel proteomic strategies have been developed for high-efficiency biomarker screening. However, evaluating various strategies and applying them for the in-depth mining of biomarkers from blood need to be elucidated.
View Article and Find Full Text PDFActa Biochim Biophys Sin (Shanghai)
June 2024
Immune checkpoint inhibitors (ICIs) targeting programmed cell death 1/programmed cell death ligand-1 (PD-1/PD-L1) have significantly prolonged the survival of advanced/metastatic patients with lung cancer. However, only a small proportion of patients can benefit from ICIs, and clinical management of the treatment process remains challenging. Glycosylation has added a new dimension to advance our understanding of tumor immunity and immunotherapy.
View Article and Find Full Text PDFThe scarcity and dynamic nature of phosphotyrosine (pTyr)-modified proteins pose a challenge for researching protein complexes with pTyr modification, which are assembled through multiple protein-protein interactions. We developed an integrated complex-centric platform for large-scale quantitative profiling of pTyr signaling complexes based on cofractionation/mass spectrometry (CoFrac-MS) and a complex-centric algorithm. We initially constructed a trifunctional probe based on pTyr superbinder (SH2-S) for specifically binding and isolation of intact pTyr protein complexes.
View Article and Find Full Text PDFGlobal profiling of single-cell proteomes can reveal cellular heterogeneity, thus benefiting precision medicine. However, current mass spectrometry (MS)-based single-cell proteomic sample processing still faces technical challenges associated with processing efficiency and protein recovery. Herein, we present an innovative sample processing platform based on a picoliter single-cell reactor (picoSCR) for single-cell proteome profiling, which involves in situ protein immobilization and sample transfer.
View Article and Find Full Text PDFN-myristoylation is one of the most widespread and important lipidation in eukaryotes and some prokaryotes, which is formed by covalently attaching various fatty acids (predominantly myristic acid C14:0) to the N-terminal glycine of proteins. Disorder of N-myristoylation is critically implicated in numerous physiological and pathological processes. Here, we presented a method for purification and comprehensive characterization of endogenous, intact N-glycine lipid-acylated peptides, which combined the negative selection method for N-terminome and the nanographite fluoride-based solid-phase extraction method (NeS-nGF SPE).
View Article and Find Full Text PDFBackground: Tumor-derived exosomes (TEXs) play an important role in the development process of cancer, which can transport a large number of carcinogenic molecules to normal cells, and subsequently promote tumor metastasis. However, TEXs that were utilized in most of previous researches were obtained from the cell medium of tumor cell lines, which cannot reflect the physiological state of primary cells in vivo. Isolation of native TEXs from human plasma with intact function is contributed to exploring the interaction between TEXs and recipient cells for understanding their true biological functions.
View Article and Find Full Text PDFHuman angiotensin-converting enzyme 2 (hACE2) is the primary receptor for cellular entry of SARS-CoV-2 into human host cells. hACE2 is heavily glycosylated and glycans on the receptor may play a role in viral binding. Thus, comprehensive characterization of hACE2 glycosylation could aid our understanding of interactions between the receptor and SARS-CoV-2 spike (S) protein, as well as provide a basis for the development of therapeutic drugs targeting this crucial interaction.
View Article and Find Full Text PDFRecent developments in phosphoproteomics have enabled signaling studies where over 10,000 phosphosites can be routinely identified and quantified. Yet, current analyses are limited in sample size, reproducibility, and robustness, hampering experiments that involve low-input samples such as rare cells and fine-needle aspiration biopsies. To address these challenges, we introduced a simple and rapid phosphorylation enrichment method (miniPhos) that uses a minimal amount of the sample to get enough information to decipher biological significance.
View Article and Find Full Text PDFUnlabelled: Asparagine-linked glycosylation protein 1 homolog (ALG1) participates in the initial stage of protein -glycosylation and -glycosylation has been implicated in the process of hepatocellular carcinoma (HCC) progression. However, whether ALG1 plays a role in human HCC remains unknown. In this study, the expression profile of ALG1 in tumorous and corresponding adjacent non-tumor tissues was analyzed.
View Article and Find Full Text PDFAmong diverse protein post-translational modifications, O-GlcNAcylation, a simple but essential monosaccharide modification, plays crucial roles in cellular processes and is closely related to various diseases. Despite its ubiquity in cells, properties of low stoichiometry and reversibility are hard nuts to crack in system-wide research of O-GlcNAc. Herein, we developed a novel method employing multi-comparative thermal proteome profiling for O-GlcNAc transferase (OGT) substrate discovery.
View Article and Find Full Text PDFLarge-scale intact glycopeptide identification has been advanced by software tools. However, tools for quantitative analysis remain lagging behind, which hinders exploring the differential site-specific glycosylation. Here, we report pGlycoQuant, a generic tool for both primary and tandem mass spectrometry-based intact glycopeptide quantitation.
View Article and Find Full Text PDFTumour cell metabolic plasticity is essential for tumour progression and therapeutic responses, yet the underlying mechanisms remain poorly understood. Here, we identify Prospero-related homeobox 1 (PROX1) as a crucial factor for tumour metabolic plasticity. Notably, PROX1 is reduced by glucose starvation or AMP-activated protein kinase (AMPK) activation and is elevated in liver kinase B1 (LKB1)-deficient tumours.
View Article and Find Full Text PDFACS Appl Mater Interfaces
August 2022
Glycosylation inhibition has great potential in cancer treatment. However, the corresponding cellular response, protein expression and glycosylation changes remain unclear. As a cell-permeable small-molecule inhibitor with reduced cellular toxicity, N-linked glycosylation inhibitor-1 (NGI-1) has become a great approach to regulate glycosylation in mammalian cells.
View Article and Find Full Text PDFProtein fatty acylation regulates numerous cell signaling pathways. Polyunsaturated fatty acids (PUFAs) exert a plethora of physiological effects, including cell signaling regulation, with underlying mechanisms to be fully understood. Herein, we report that docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) regulate PI3K-AKT signaling by modifying PDK1 and AKT2.
View Article and Find Full Text PDFLinkage isomers (α-2,3- or α-2,6-linkage) of sialylated N-glycans are involved in the emergence and progression of some diseases, so they are of great significance for diagnosing and monitoring diseases. However, the qualitative and quantitative analysis of sialylated N-glycan linkage isomers remains challenging due to their low abundance and limited isomeric separation techniques. Herein, we developed a novel strategy integrating one-step sialic acid derivatization, positive charge-sensitive separation and highly sensitive detection based on microfluidic capillary electrophoresis-mass spectrometry (MCE-MS) for fast and specific analysis of α-2,3- and α-2,6-linked sialylated N-glycan isomers.
View Article and Find Full Text PDFThe prevalence of intracranial aneurysm (IA) is increasing, and the consequences of its rupture are severe. This study aimed to reveal specific, sensitive, and non-invasive biomarkers for diagnosis and classification of ruptured and unruptured IA, to benefit the development of novel treatment strategies and therapeutics altering the course of the disease. We first assembled an extensive candidate biomarker bank of IA, comprising up to 717 proteins, based on altered proteins discovered in the current tissue and serum proteomic analysis, as well as from previous studies.
View Article and Find Full Text PDFLarge-scale profiling of intact glycopeptides is critical but challenging in glycoproteomics. Data independent acquisition (DIA) is an emerging technology with deep proteome coverage and accurate quantitative capability in proteomics studies, but is still in the early stage of development in the field of glycoproteomics. We propose GproDIA, a framework for the proteome-wide characterization of intact glycopeptides from DIA data with comprehensive statistical control by a 2-dimentional false discovery rate approach and a glycoform inference algorithm, enabling accurate identification of intact glycopeptides using wide isolation windows.
View Article and Find Full Text PDFObjective: Diabetic Keratopathy (DK) is one of the significant complications of type II diabetes (T2DM) with pathogenesis not yet clarified. Since hyperglycemia is able to change the protein components contained in plasma exosomes, liquid chromatography-tandem mass spectrometry (LC-MS/MS) is considered as feasible to analyze the expression of plasma exosomal proteins in patients with T2DM and non-diabetic patients respectively, find critical biological markers, and explore the mechanism of DK as well as potential therapeutic targets.
Method: Blood and clinical information of corneal epithelial injury in a diabetic group (the study group) and a non-diabetic group (the control group), who were patients admitted to the Department of Ophthalmology, Yangpu Hospital, Tongji University School of Medicine from July 2020 to November 2020, were collected.
Background: Bicuspid aortic valve (BAV) is the most common congenital cardiovascular disease in general population and is frequently associated with the development of thoracic aortic aneurysm (TAA). There is no effective strategy to intervene with TAA progression due to an incomplete understanding of the pathogenesis. Insufficiency of NOTCH1 expression is highly related to BAV-TAA, but the underlying mechanism remains to be clarified.
View Article and Find Full Text PDFBackground: Bicuspid aortic valve (BAV) is the most common congenital heart anomaly and is prone to cause complications, such as valvular stenosis and thoracic aortic dilation. There is currently no reliable way to predict the progression rate to thoracic aortic aneurysm. Here, we aimed to characterize the proteomic landscape in the plasma of stenotic BAV patients and provide potential biomarkers to predict progressive aortic dilation.
View Article and Find Full Text PDF