A fully digital control scheme for non-polarization-maintaining (non-PM) nanosecond pulse coherent beam combining (CBC) is proposed, where digital locking of optical coherence by single-detector electronic-frequency tagging (LOCSET) for active phase control and stochastic parallel gradient descent (SPGD) for active polarization control is proposed. The fully digital control scheme is integrated on a real-time field-programmable gate array (FPGA) empowered hardware platform and then experimentally validated in a four-channel all-fiber non-fully polarization-maintaining nanosecond pulse CBC system. Consequently, the system can be fully locked in 9.
View Article and Find Full Text PDFThe diverse applications of mode-locked fiber lasers (MLFLs) raise various demands on the output of the laser, including the pulse duration, energy, and shape. Simulation is an excellent method to guide the design and construction of an MLFL for on-demand laser output. Traditional simulation of an MLFL uses the split-step Fourier method (SSFM) to solve the nonlinear Schrödinger (NLS) equation, which suffers from high computational complexity.
View Article and Find Full Text PDFThe modeling and prediction of the ultrafast nonlinear dynamics in the optical fiber are essential for the studies of laser design, experimental optimization, and other fundamental applications. The traditional propagation modeling method based on the nonlinear Schrödinger equation (NLSE) has long been regarded as extremely time-consuming, especially for designing and optimizing experiments. The recurrent neural network (RNN) has been implemented as an accurate intensity prediction tool with reduced complexity and good generalization capability.
View Article and Find Full Text PDFSpectral interferometry is utilized in a wide range of biomedical and scientific applications and metrology. Retrieving the magnitude and phase of the complex electric field from the interferogram is central to all its applications. We report a spectral interferometry system that utilizes a neural network to infer the magnitude and phase of femtosecond interferograms directly from the measured single-shot interference patterns and compare its performance with the widely used Hilbert transform.
View Article and Find Full Text PDFMode-locked fiber lasers based on nonlinear polarization evolution can generate femtosecond pulses with different pulse widths and rich spectral distributions for versatile applications through polarization tuning. However, a precise and repeatable location of a specific pulsation regime is extremely challenging. Here, by using fast spectral analysis based on a time-stretched dispersion Fourier transform as the spectral discrimination criterion, along with an intelligent polarization search algorithm, for the first time, we achieved real-time control of the spectral width and shape of mode-locked femtosecond pulses; the spectral width can be tuned from 10 to 40 nm with a resolution of ~1.
View Article and Find Full Text PDF