Publications by authors named "Guoqiang Fang"

Metabolites serve as vital biomarkers, reflecting physiological and pathological states and offering insights into disease progression and early detection. This study introduces an advanced analytical technique integrating label-free Surface-Enhanced Raman Spectroscopy (SERS) with deep learning, and leverages SHAP (SHapley Additive exPlanations) to provide a visual interpretative analysis of the predictive rationale of the deep learning model, facilitating simultaneous detection and quantitative analysis of multiple metabolites. Monolayer silver nanoparticle SERS substrates were fabricated via a triple-phase interfacial self-assembly method, which captured complex spectral information of target metabolites in mixed solutions.

View Article and Find Full Text PDF

Identification of components in pesticide mixtures has been a major challenge in spectral analysis. In this paper, we assembled monolayer Ag nanoparticles on Thin-layer chromatography (TLC) plates to prepare TLC-Ag substrates with mixture separation and surface-enhanced Raman scattering (SERS) detection. Spectral scans were performed along the longitudinal direction of the TLC-Ag substrate to generate SERS spectra of all target analytes on the TLC plate.

View Article and Find Full Text PDF

Surface-enhanced Raman scattering (SERS) is a highly sensitive tool in the field of environmental testing. However, the detection and accurate quantification of weakly adsorbed molecules (such as heavy metal ions) remain a challenge. Herein, we combine clean SERS substrates capable of capturing heavy metal ions with convolutional neural network (CNN) algorithm models for quantitative detection of heavy metal ions in solution.

View Article and Find Full Text PDF

Drug abuse is a global social issue of concern. As the drug market expands, there is an urgent need for technological methods to rapidly detect drug abuse to meet the needs of different situations. Here, we present a strategy for the rapid identification of benzodiazepines (midazolam and diazepam) using surface-enhanced Raman scattering (SERS) combined with neural networks (CNN).

View Article and Find Full Text PDF

Lanthanide-doped upconversion nanoparticles (UCNPs) are rising as prospect nanomaterials for constructing polarization-sensitive narrowband near-infrared (NIR) photodetectors (PDs), which have attracted significant interest in astronomy, object identification, and remote sensing. However, polarized narrowband NIR photodetection and imaging based on UCNPs have yet to be realized. Herein, we demonstrate that NIR photodetection and imaging are capable of sensing polarized light as well as affording wavelength-selective detection at 1550 nm by integrating directional-Au@Ag nanorods (D-Au@Ag NRs) with NaYF:Er@NaYF UCNPs.

View Article and Find Full Text PDF

The surface-enhanced Raman scattering (SERS) technique with ultrahigh sensitivity has gained attention to meet the increasing demands for food safety analysis. The integration of machine learning and SERS facilitates the practical applicability of sensing devices. In this study, a machine learning-driven 3D plasmonic cavity-in-cavity (CIC) SERS platform is proposed for sensitive and quantitative detection of antibiotics.

View Article and Find Full Text PDF

Broadband surface-enhanced Raman scattering (SERS) substrates can achieve strong SERS enhancement at multiple excitation wavelengths, which is highly desirable in diverse fields. Here, a facile and reliable interfacial layer-by-layer self-assembly technique was proposed to construct broadband and sensitive Au@Ag nanorod (NR) monolayer film over nanosphere (MFON) substrate. The Au@Ag NR MFON substrate with ultra-broad spectrum from visible to near-infrared region was achieved by varying the shape of plasmonic nanoparticles, which exhibits excellent SERS activity at different excitation wavelengths.

View Article and Find Full Text PDF

Objective: To explore the pros and cons of sequential high-flow nasal cannula (HFNC) and non-invasive positive pressure ventilation (NIPPV) immediately following early extubated patients with severe respiratory failure (SRF) due to acute exacerbations of chronic obstructive pulmonary disease (AECOPD), so as to provide evidence for clinical selection of optimal scheme.

Methods: Consecutive AECOPD patients admitted to the respiratory intensive care unit (RICU) of the First Affiliated Hospital of Xinjiang Medical University from January 2019 to September 2020 were screened for enrollment. Patients were between 40 years old and 85 years old with acute exacerbation of bronchial-pulmonary infection, who received endotracheal intubation mechanical ventilation (ETI-MV) as the initial respiratory support method.

View Article and Find Full Text PDF

The self-assembly of plasmonic nanoparticles into highly ordered superlattices could pave the way toward novel nanomaterials for surface-enhanced Raman scattering (SERS). Here, we propose the formation of large-area superlattices of elongated rhombic dodecahedra in a vertical orientation via a controlled droplet evaporation process. Expectedly, the constant humidity of the experimental condition could control the evaporation speed of droplets and this procedure promotes the balance between driven depletion attraction and electrostatic repulsion in the system, leading to the generation of well-organized three-dimensional (3D) superlattices.

View Article and Find Full Text PDF

Interfacial self-assembly is a powerful technology for preparing large scale nanoparticle monolayers, but fabrication of highly repeatable large scale nanoparticle monolayers remains a challenge. Here we develop an oil/water/oil (O/W/O) three-phase system based on the Marangoni effect to fabricate highly reproducible nanoparticle monolayers. Nanoparticles could be easily transferred and compressed from the lower O/W interface to the upper O/W interface due to the interfacial tension gradient.

View Article and Find Full Text PDF

Background And Aims: Chronic intermittent hypoxia (CIH) exposure causes atherosclerosis, although the underlying mechanisms are poorly understood. This study defines the role of endothelial intrinsic NF-κB signaling in the atherogenic response to CIH.

Methods: We created ApoE-EC mice that are deficient in the apolipoprotein E gene (ApoE) and overexpress an I-κBα mutant (I-κBmt) selectively in endothelial cells.

View Article and Find Full Text PDF

Obstructive sleep apnea (OSA) is highly prevalent in the USA and is recognized as an independent risk factor for atherosclerotic cardiovascular disease. Identification of atherosclerosis risk factor attributable to OSA may provide opportunity to develop preventive measures for cardiovascular risk reduction. Chronic intermittent hypoxia (CIH) is a prominent feature of OSA pathophysiology and may be a major mechanism linking OSA to arteriosclerosis.

View Article and Find Full Text PDF

Hematopoietic stem cells (HSCs) are protected in a metabolically dormant state within the bone marrow stem cell niche. Inflammation has been shown to disrupt HSC dormancy and cause multiple functional changes. Here, we investigated whether HSC functions were altered in systemic lupus erythematosus (SLE)-prone mice and whether this contributed to clinical manifestations of SLE.

View Article and Find Full Text PDF

Current animal models of chronic intermittent hypoxia (CIH)-induced atherosclerosis have limitations. Mechanisms of CIH-induced atherosclerosis are poorly understood. This study tested new mouse models of CIH-induced atherosclerosis and defined the role of NF-κB p50 in CIH-induced atherosclerosis.

View Article and Find Full Text PDF

Grb2 (growth-factor receptor-bound protein-2) is a signaling adaptor that interacts with numerous receptors and intracellular signaling molecules. However, its role in B-cell development and function remains unknown. Here we show that ablation of Grb2 in B cells results in enhanced B-cell receptor signaling; however, mutant B cells do not form germinal centers in the spleen after antigen stimulation.

View Article and Find Full Text PDF

Regulation of protein kinase A (PKA) by binding of cAMP to the regulatory subunit and the resulting release of the active catalytic subunit is a very well established mechanism of kinase activation. We have shown recently that PKA in budding yeast is also subject to an additional level of regulation that that modulates its activity in response to nutrient availability. Nutrient regulation of PKA activity requires a pair of proteins, Gpb1 and Gpb2, that contain several kelch repeats, a sequence motif that predicts that they fold into a β-propeller structure.

View Article and Find Full Text PDF

Aim: To investigate the expression profile of miRNA in esophageal squamous cell carcinoma (ESCC).

Methods: The expression profile of miRNA in ESCC tissues was analyzed by miRNA microarray. The expression levels of miR-143 and miR-145 in 86 ESCC patients were determined by real-time polymerase chain reaction (PCR) using TaqMan assay.

View Article and Find Full Text PDF