Publications by authors named "Guoqiang Cui"

Traditional agriculture is gradually being combined with artificial intelligence technology. High-performance fruit detection technology is an important basic technology in the practical application of modern smart orchards and has great application value. At this stage, fruit detection models need to rely on a large number of labeled datasets to support the training and learning of detection models, resulting in higher manual labeling costs.

View Article and Find Full Text PDF

Purpose: To investigated the role of estrogen receptor-1 (ER-1) in maintaining homeostasis in ocular surface.

Methods: ER-1-knockout (ER-1KO) mice were studied at 4 months of age. The ocular surface was examined using a slit lamp.

View Article and Find Full Text PDF

The gastrin-releasing peptide receptor (GRPR) binds to ligands such as gastrin-releasing peptide (GRP) and plays a variety of biological roles. In this study, we investigated the therapeutic effect of a novel gastrin-releasing peptide receptor antagonist RH-1402 in hyperuricemia-induced kidney fibrosis and its underlying mechanisms. We conducted enzyme linked immunosorbent assay (ELISA) and immunohistochemical analyses and found that proGRP and GRPR expression levels were significantly increased in patients with hyperuricemic nephropathy (HN) and HN mice.

View Article and Find Full Text PDF

Although deep learning-based fruit detection techniques are becoming popular, they require a large number of labeled datasets to support model training. Moreover, the manual labeling process is time-consuming and labor-intensive. We previously implemented a generative adversarial network-based method to reduce labeling costs.

View Article and Find Full Text PDF

Distributed structure health monitoring has been a hot research topic in recent years, and optic fiber sensors are largely developed for the advantages of high sensitivity, better spatial resolution, and small sensor size. However, the limitation of fibers in installation and reliability has become one of the major drawbacks of this technology. This paper presents a fiber optic sensing textile and a new installation method inside bridge girders to address those shortcomings in fiber sensing systems.

View Article and Find Full Text PDF

Two automated treatment planning techniques were evaluated for multiple brain metastases using a single isocenter. One technique is knowledge-based planning (KBP) using a stereotactic radiosurgery (SRS) model in Eclipse treatment planning system (TPS); and the other is the Multiple Brain Mets (MBM) SRS technique in Brainlab Elements TPS. Eighteen plans each with 3-10 lesions were used for the study.

View Article and Find Full Text PDF

Purpose: This technical note aims to investigate the dosimetric impact of stray radiation on the Common Control Unit (CCU) of the IBA Blue Phantom and the measured beam data.

Methods: Three CCUs of the same model were used for the study. The primary test CCU was placed at five distances from the radiation beam central axis.

View Article and Find Full Text PDF

In this study, we have characterized the efficiency of an Elekta linac in the delivery of gated radiotherapy. We have explored techniques to reduce the beam-on delay and to improve the delivery efficiency, and have investigated the impact of frequent beam interruptions on the dosimetric accuracy of gated deliveries. A newly available gating interface was installed on an Elekta Synergy.

View Article and Find Full Text PDF

The aim of this study was to prepare nanosized Tripterygium wilfordii multi-glycoside (GTW) powders by the supercritical antisolvent precipitation process (SAS), and to evaluate the anti-inflammatory effects. Ethanol was used as solvent and carbon dioxide was used as an antisolvent. The effects of process parameters such as precipitation pressure (15-35 MPa), precipitation temperature (45-65 °C), drug solution flow rates (3-7 mL/min) and drug concentrations (10-30 mg/mL) were investigated.

View Article and Find Full Text PDF

Embryonic development and morphological characteristics of Japanese devil stinger Inimicus japonicus during early life stage were investigated. Larvae were hatched out 50 h after fertilization at temperature 21°C. Total length of the newly hatched larva was 4.

View Article and Find Full Text PDF

The aim of this study is to develop an automated method to objectively compare motion artifacts in two four-dimensional computed tomography (4D CT) image sets, and identify the one that would appear to human observers with fewer or smaller artifacts. Our proposed method is based on the difference of the normalized correlation coefficients between edge slices at couch transitions, which we hypothesize may be a suitable metric to identify motion artifacts. We evaluated our method using ten pairs of 4D CT image sets that showed subtle differences in artifacts between images in a pair, which were identifiable by human observers.

View Article and Find Full Text PDF

In order to understand the possible role of globin genes in fish salinity adaptation, we report the molecular characterization and expression of all four subunits of haemoglobin, and their response to salinity challenge in flounder. The entire open reading frames of α1-globin and α2-globin genes were 432 and 435 bp long, respectively, whereas the β1-globin and β2-globin genes were both 447 bp. Although the head kidney (pronephros) is the predicted major site of haematopoiesis, real-time PCR revealed that expression of α-globin and β-globin in kidney (mesonephros) was 1.

View Article and Find Full Text PDF

A respiratory training system based on audiovisual biofeedback has been implemented at our institution. It is intended to improve patients' respiratory regularity during four-dimensional (4D) computed tomography (CT) image acquisition. The purpose is to help eliminate the artifacts in 4D-CT images caused by irregular breathing, as well as improve delivery efficiency during treatment, where respiratory irregularity is a concern.

View Article and Find Full Text PDF

We report a novel hemispherical micro-cavity that is comprised of a planar integrated semiconductor distributed Bragg reflector (DBR) mirror, and an external, concave micro-mirror having a radius of curvature 50 microm. The integrated DBR mirror containing quantum dots (QD), is designed to locate the QDs at an antinode of the field in order to maximize the interaction between the QD and cavity. The concave micro-mirror, with high-reflectivity over a large solid-angle, creates a diffraction-limited (sub-micron) mode-waist at the planar mirror, leading to a large coupling constant between the cavity mode and QD.

View Article and Find Full Text PDF

We calculate the integrated-pulse quantum efficiency of single-photon sources in the cavity quantum electrodynamics (QED) strong-coupling regime. An analytical expression for the quantum efficiency is obtained in the Weisskopf-Wigner approximation. Optimal conditions for a high quantum efficiency and a temporally localized photon emission rate are examined.

View Article and Find Full Text PDF