Publications by authors named "Guoqi Chen"

Pancreatic ductal adenocarcinoma (PDAC) is a clinically challenging cancer because of the difficulty in diagnosis and its resistance to chemotherapy. Focal adhesion kinase (FAK) is found overexpressed in PDAC, and targeting FAK has been proved to impede the progress of PDAC. However, most of FAK inhibitors were reported to bind with FAK in a DFG-in conformation, leading to a limited anti-tumor effect in clinical studies.

View Article and Find Full Text PDF

Hydrogel-based electronic devices in aquatic environments have sparked widespread research interest. Nevertheless, the challenge of developing hydrogel electronics underwater has not been profoundly surmounted because of the fragility and swelling of hydrogels in aquatic environments. In this work, a zwitterionic double network hydrogel comprised of polyvinyl alcohol (PVA), poly(sulfobetaine methacrylate) (PSBMA), and sulfuric acid (HSO) demonstrates super-tough and non-swelling performance.

View Article and Find Full Text PDF

Native weeds have a long history of adaptation to local environments. Understanding the relationship between the occurrence of native weeds and their life history traits is crucial for effective weed management and risk assessment of plant invasions. In this study, we surveyed native weed species and their dominance across 666 field sites in agricultural areas of Yangzhou City, China, and each site was 13.

View Article and Find Full Text PDF

Hydrogel-based flexible artificial tactility is equipped to intelligent robots to mimic human mechanosensory perception. However, it remains a great challenge for hydrogel sensors to maintain flexibility and sensory performances during cyclic loadings at high or low temperatures due to water loss or freezing. Here, a flexible robot tactility is developed with high robustness based on organohydrogel sensor arrays with negligent hysteresis and temperature tolerance.

View Article and Find Full Text PDF

The clinical treatment of chronic diabetic wounds is a long-standing thorny issue. Strategies targeting the diabetic micro-environment have been developed to promote wound healing. However, it remains challenging to reverse the adverse conditions and re-activate tissue regeneration and angiogenesis.

View Article and Find Full Text PDF

Integrase plays an important role in the life cycle of HIV-1, and integrase strand transfer inhibitors (INSTIs) can effectively impair the viral replication. However, drug resistance mutations have been confirmed to decrease the efficacy of INSTI during the antiviral therapy. Herein, indole-2-carboxylic acid (1) was found to inhibit the strand transfer of integrase, and the indole nucleus of compound 1 was observed to chelate with two Mg ions within the active site of integrase.

View Article and Find Full Text PDF

Hydrogel-based wearable flexible pressure sensors have great promise in human health and motion monitoring. However, it remains a great challenge to significantly improve the toughness, sensitivity and stability of hydrogel sensors. Here, we demonstrate the fabrication of hierarchically structured hydrogel sensors by 3D printing microgel-reinforced double network (MRDN) hydrogels to achieve both very high sensitivity and mechanical toughness.

View Article and Find Full Text PDF

Information encryption technologies are very important for security, health, commodity, and communications, etc. Novel information encryption mechanisms and materials are desired to achieve multimode and reprogrammable encryption. Here, a supramolecular strategy is demonstrated to achieve multimodal, erasable, reprogrammable, and reusable information encryption by reversibly modulating fluorescence.

View Article and Find Full Text PDF

Objective: In order to solve the problem that the existing oxygen production technology cannot simultaneously produce pure oxygen, high-purity oxygen, ultra-pure oxygen, and the modular expansion of oxygen production capacity, a new type of electrochemical ceramic membrane oxygen production system was discussed and developed.

Methods: Through the design of the ceramic membrane stack, airflow distributor, heater, double spiral exchanger, thermal insulation sleeve, control panel, control box and auxiliary system in the electrochemical ceramic membrane oxygen generator, a modular oxygen production system is formed.

Results: The modular design can produce pure oxygen, high-purity oxygen and ultra-pure oxygen to meet various oxygen consumption needs.

View Article and Find Full Text PDF

Thermochromic smart windows are widely developed to modulate building energy exchange to save building energy consumption. However, most smart windows have fixed working temperatures, moderate energy-saving efficiency, and are not suitable for diverse (cold and hot) climates. Here smart windows with strong temperature modulation over a broad range of hydrogels with adjustable transition temperatures for all-weather building temperature regulation in different climates are reported.

View Article and Find Full Text PDF

Thermochromic smart windows are considered to be promising energy-saving devices for reducing energy consumption in buildings. The ideal materials for thermochromic smart windows should have high transmittance, high solar modulation, low phase-transition temperature, and excellent high-temperature thermal stability, which are difficult to achieve simultaneously. This work reports a simple one-step low-temperature polymerization method to prepare a thermo-responsive poly(-isopropylacrylamide)/hydroxypropylmethyl cellulose (PNIPAM/HPMC) hydrogel achieving the above performances simultaneously.

View Article and Find Full Text PDF

Natural gas hydrate has sparked worldwide interest due to its enormous energy potential. Geophysical surveys are commonly used in gas hydrate exploration, and resistivity logging plays an important role in this field. Nevertheless, the electrical response mechanism as a result of the gas hydrate growth in sediment is not well understood.

View Article and Find Full Text PDF

As one of the most important features of myocardial ischemia reperfusion (MI/R) injury, the overproduction of reactive oxygen species (ROS) overwhelms the intrinsic antioxidant and impairs the function of mitochondria and, finally, leads to cardiomyocyte death. To improve the damage of cardiomyocyte caused by oxidative stress, a series of α-carboline derivatives were designed and synthesized in this study. The biological studies revealed that most of the α-carbolines exhibited obvious protective activities against HO-induced cardiomyocyte injury.

View Article and Find Full Text PDF

Long-term herbicide application may facilitate the adaptive evolution of weed populations. With var population A from a rice field used for the experiment of effectiveness of herbicide in Nanling County, Anhui Province, we conducted common garden experi-ments with seeds of population A and three control populations collected from normal rice fields. Compared with the three control populations, population A had significantly lower seed production for individual plant, but higher 1000-seed weight.

View Article and Find Full Text PDF

Facile preparation of organohydrogel electrolyte integrated with good anti-freezing property, toughness, transparency, conductivity and thermoplasticity is important and still remains challenging. Novel conductive and tough poly(vinyl alcohol)/sodium alginate/glycerol (PVA/SA/Gly) composite organohydrogel electrolytes were obtained by a simple method in this paper. PVA and SA was firstly dissolved in a mixed solution of distilled water and glycerol and the PVA/SA/Gly organohydrogel was obtained by the freezing-thawing process, then PVA/SA/Gly organohydrogel was immersed into the saturated NaCl aqueous solution.

View Article and Find Full Text PDF

Hydrogels are important for stretchable and wearable multifunctional sensors, but their application is limited by their low mechanical strength and poor long-term stability. Herein, a conductive organohydrogel with a 3D honeycomb structure was prepared by integrating carbon nanotubes (CNTs) and carbon black (CB) into a poly(vinyl alcohol)/glycerol (PVA/Gly) organohydrogel. Such a nanocomposite organohydrogel is built on a physical cross-linking network formed by the hydrogen bonds among PVA, glycerol, and water.

View Article and Find Full Text PDF

Facile preparation of super tough hydrogels with low temperature tolerance and anti-swelling property is still a challenging task for researchers. Meanwhile, the vast majority of tough hydrogels were obtained though chemical crosslinking and complicated synthesis or processing method accompanying a large number of harmful chemical reagents. Herein, the super tough chitosan/poly(vinyl alcohol) (CS/PVA) hydrogels (the maximum compressive strength of 18.

View Article and Find Full Text PDF

Leukemia remains a fatal disease for most patients and effective therapeutic strategies are urgently required. Typhaneoside (TYP) is a major flavonoid in the extract of Pollen Typhae, showing significant biological and pharmacological effects. In the present study, we explored the effects of TYP on acute myeloid leukemia (AML) progression.

View Article and Find Full Text PDF

proliferation seriously threatens rice production worldwide. We combined a restriction-site associated DNA (RAD) approach with Illumina DNA sequencing for rapid and mass discovery of simple sequence repeat (SSR) and single nucleotide polymorphism (SNP) markers for . RAD tags were generated from the genomic DNA of two plants, and sequenced to produce 5197.

View Article and Find Full Text PDF

Background: Alopecurus japonicus is a serious grass weed species in wheat fields in eastern Asia, and has evolved strong resistance to acetyl-CoA carboxylase (ACCase)-inhibiting herbicides. Although target-site resistance (TSR) to ACCase inhibitors in A. japonicus has been reported, non-target site resistance (NTSR) has not.

View Article and Find Full Text PDF

Arable areas are commonly susceptible to alien plant invasion because they experience dramatic environmental influences and intense anthropogenic activity. However, the limited reports on relevant factors in plant invasion of croplands have addressed single or a few invasive species and environmental factors. To elucidate key factors affecting plant invasions in croplands, we analyzed the relationship between 11 effective factors and changes in composition of alien plants, using field surveys of crop fields in Anhui Province conducted during 1987-1990 (historical dataset) and 2005-2010 (recent dataset), when rapid urbanization was occurring in China.

View Article and Find Full Text PDF