Lakes and reservoirs worldwide are experiencing a growing problem with harmful cyanobacterial blooms (HCBs), which have significant implications for ecosystem health and water quality. Algaecide is an effective way to control HCBs effectively. In this study, we applied an active substructure splicing strategy for rapid discovery of algicides.
View Article and Find Full Text PDFCyanobacterial fructose-1,6-/sedoheptulose-1,7-bisphosphatase (Cy-FBP/SBPase) was an important regulatory enzyme in cyanobacterial photosynthesis and was a potential target enzyme for screening to obtain novel inhibitors against cyanobacterial blooms. In this study, we developed a novel pharmacophore screening model based on the catalytic mechanism and substrate structure of Cy-FBP/SBPase and screened 26 series compounds with different structures and pharmacophore characteristics from the Specs database by computer-assisted drug screening. These compounds exhibited moderate inhibitory activity against Cy-FBP/SBPase, with 9 compounds inhibiting >50% at 100 μM.
View Article and Find Full Text PDFThe frequency and intensity of harmful cyanobacterial blooms (HCBs) are increasing all over the world, their prevention and control have become a great challenge. In this paper, a series of 1,3,4-thiadiazole thioacetamides (T series) were designed and synthesized as potential algaecides. Among them, the compound T3 showed its best algacidal activity against Synechocystis sp.
View Article and Find Full Text PDF