Publications by authors named "Guoling Huang"

Cyclic guanosine monophosphate (GMP)-adenosine monophosphate (AMP) synthase (cGAS) detects viral or endogenous DNA, activating the innate immune response to infections and autoimmune diseases. Upon binding to double-stranded DNA, cGAS synthesizes 2'3' cGMP-AMP, which triggers type I interferon production. Besides its presence in the cytosol and nucleus, cGAS is found at the plasma membrane, although its significance remains unclear.

View Article and Find Full Text PDF
Article Synopsis
  • Proper T-cell metabolism is essential for an effective immune response, but disruptions can lead to diseases like cancer and autoimmune disorders.
  • The study identifies MYO1F as crucial for T-cell activation and shows that knocking out Myo1f in mice increases tumor burden and affects autoimmune disease severity due to impaired T-cell function.
  • The research also demonstrates how MYO1F regulation influences glycolysis and T-cell growth, particularly in the context of a fusion protein related to a type of lymphoma, indicating potential therapeutic targets for treatment.
View Article and Find Full Text PDF

Herein, we present a copper-catalyzed oxidative amination of sulfenamides for the synthesis of sulfinamidines. By the employment of air as the terminal oxidant, a diverse array of secondary and primary amines can be efficiently transformed into their corresponding products. This method is well-suited for last-stage functionalization, and the underlying mechanism has been investigated.

View Article and Find Full Text PDF

In this study, we present a novel, efficient method for the oxidative amination of sulfenamides using diacetoxyiodobenzene (PhI(OAc)) and amines under basic conditions. This innovative technique streamlines the synthesis of sulfinamidines under mild, metal-free conditions, achieving outstanding yields of up to 99%. Furthermore, we propose possible pathways that elucidate the observed molecular sequence of events in this reaction.

View Article and Find Full Text PDF

In this investigation, an unprecedented transition-metal-free and redox-neutral synthesis of sulfilimines was realized through the S-arylation of readily obtainable sulfenamides employing diaryliodonium salts. The pivotal step encompassed the resonance between bivalent nitrogen-centered anions, engendered postdeprotonation of sulfenamides under alkaline conditions, and sulfinimidoyl anions. The experimental outcomes demonstrate that sulfinimidoyl anionic species function as efficacious nucleophilic reagents, affording sulfilimines with notable to exceptional yields and superlative chemoselectivity, all executed within a transition-metal-free protocol and under exceptionally mild conditions.

View Article and Find Full Text PDF

In this work, we developed a metal-free and redox-neutral strategy for the selective S-alkylation of sulfenamides under basic conditions to yield sulfilimines. The key step involves the resonance between bivalent nitrogen-centered anions, generated after deprotonation of sulfenamides under alkaline conditions, and sulfinimidoyl anions. Our sustainable and efficient approach employs sulfur-selective alkylation of readily accessible sulfenamides and commercially available halogenated hydrocarbons, resulting in the successful synthesis of 60 sulfilimines in high yields (36-99%) and short reaction times.

View Article and Find Full Text PDF

A highly efficient Rh(II) catalyzed non-radical protocol to access NH-free C-3 bifunctional oxindoles, which possess 3-allyl and 3-amino simultaneously, was first achieved by employing an intermolecular [2,3]-sigmatropic rearrangement reaction between diazooxindoles and tertiary allylic amines. Utilizing readily available allylamines as the nitrogen and allyl source concurrently, a wide range of bio-active 3-allyl-3-(amino)oxindoles were obtained in excellent yields under very mild reaction conditions; meanwhile, the TON can be up to 90 000. Our study addresses a gap in the literature by investigating intermolecular rearrangements of ammonium ylides with diazoamides, which have been relatively understudied.

View Article and Find Full Text PDF

In this study, we present a novel and efficient approach for the oxidative esterification of sulfenamides using phenyliodonium diacetate, enabling the synthesis of sulfinimidate esters and sulfilimines under mild and metal-free conditions, with yields reaching up to 99%. The protocol is readily scalable and compatible with a diverse range of substrates and functional groups, and we demonstrate its potential for late-stage functionalization of pharmacologically relevant molecules. Furthermore, we propose a plausible reaction mechanism to account for the observed sequence of events.

View Article and Find Full Text PDF

Fourteen new sulphur-containing amides, glycocramides A-N (1-14), as well as nine known analogues (15-23) were isolated and characterized from Glycosmis craibii Tanaka. The chemical structures of new sulphur-containing amides 1-14 were ambiguously elucidated by extensive spectroscopic methods, while the known compounds 15-23 were identified by the comparison of their experimental spectral data with those described data in the literatures. The antiproliferative effects of all isolated sulphur-containing amides were evaluated in vitro.

View Article and Find Full Text PDF

The construction of the 3-allyl/3-allenyl-3-(thio)oxindole core remains a challenge in organic synthesis. Herein, we report a novel Rh(esp) catalytic Doyle-Kirmse reaction to furnish the oxindole core, bearing unbiased NH as well as a quaternary stereogenic center at the 3-position, in good to excellent yields under mild conditions. These reactions are concise, practical, atom-economic, and highly efficient, and feature a TON of up to 3700.

View Article and Find Full Text PDF

Previous studies have discovered that zinc-2-glycoprotein (ZAG) is related to insulin resistance and lipid metabolism. The aim of the study is to explore the change of serum ZAG and its related factors in gestational diabetes mellitus (GDM). Eighty newly diagnosed GDM patients were enrolled in the case group, and 80 normal pregnant women were selected as the control group.

View Article and Find Full Text PDF

An environmentally sustainable strategy for the chemoselective heterocyclization of bromoenynes through a transition-metal-free sulfuration/cyclization process is reported. Using inexpensive and safe EtOCSK as a thiol surrogate and tetrabutylphosphonium bromide and HO as a mixed solvent, the reaction provided a range of substituted thiophenes in moderate to good yields. In addition, 2,3,4,5-tetrasubstituted thiophenes were able to be prepared under mild reaction conditions by electrophilic heterocyclization with NHI and EtOCSK in good yields.

View Article and Find Full Text PDF

The use of potassium ethyl xanthate (EtOCSk) as a sulfur atom donor enabled the transition-metal-free [3 + 1 + 1] cascade annulation of isopropene derivatives with NHI in DMSO/HO, affording various 4-substituted isothiazoles in moderate to good yields with good functional group compatibility. Furthermore, Pd and Ag-catalyzed C5-H-selective direct oxidation dimerization of 4-substituted isothiazoles afforded 5,5'-bisisothiazoles. This series of reactions included the formation of new C-S, C-N, N-S, and C-C bonds via cascade addition, annulation, and direct C-H activation under mild conditions.

View Article and Find Full Text PDF

Fucosyltransferase 8 (FUT8) and β-galactoside α-2,6-sialyltransferase 1 (ST6GAL1) are glycosyltransferases that catalyze α1,6-fucosylation and α2,6-sialylation, respectively, in the mammalian N-glycosylation pathway. They are aberrantly expressed in various human diseases. FUT8 is non-glycosylated but is responsible for the fucosylation of ST6GAL1.

View Article and Find Full Text PDF

Western blotting is the most extensively used technique for the identification and characterisation of proteins and their expression levels. One of the major issues with this technique is the loss of proteins from the blotted membrane during the incubation and washing steps, which affects its sensitivity and reproducibility. Here, we have optimised the fixation conditions for immunoblotting and lectin blotting on electroblotted polyvinylidene difluoride and nitrocellulose membranes, using a combination of organic solvents and heating.

View Article and Find Full Text PDF

Aim And Objective: The benzimidazole derivatives have been obtained via weightreducing aid (L-Carnitine) as a cheap catalyst. A wide range of aromatic aldehydes easily undergo condensations with substituted o-phenylendiamine under mild condition to afford the target molecular in excellent yields.

Materials And Methods: Melting points were measured on an Electrothemal X6 microscopy digital melting point apparatus.

View Article and Find Full Text PDF

Sodium butyrate (NaBu), a histone deacetylase inhibitor, has demonstrated anti-tumor effects in several cancers, and is a promising candidate chemotherapeutic agent. However, its roles in nasopharyngeal carcinoma (NPC), an endemic malignant disease in Southern China and Southeast Asia, has rarely been studied. In the present study, MTT assay, colony formation assay, flow cytometry analysis and western blotting were performed to explore the influence of NaBu on NPC cells and its underlying mechanism.

View Article and Find Full Text PDF

Loss of deleted in liver cancer-1 (DLC-1) can induce apoptosis and inhibit the mobility, migration and metastasis in several cancers. Previously, we revealed that ectopic expression of DLC-1 can suppress proliferation, mobility, migration and tumorigenesis in nasopharyngeal carcinoma (NPC). However, the molecular mechanisms accounting for the roles of DLC-1 in NPC are still obscure.

View Article and Find Full Text PDF