Publications by authors named "Guolin Yun"

Materials following Murray's law are of significant interest due to their unique porous structure and optimal mass transfer ability. However, it is challenging to construct such biomimetic hierarchical channels with perfectly cylindrical pores in synthetic systems following the existing theory. Achieving superior mass transport capacity revealed by Murray's law in nanostructured materials has thus far remained out of reach.

View Article and Find Full Text PDF

Prosthetic hands play a vital role in restoring forearm functionality for patients who have suffered hand loss or deformity. The hand gesture intention recognition system serves as a critical component within the prosthetic hand system. However, accurately and swiftly identifying hand gesture intentions remains a challenge in existing approaches.

View Article and Find Full Text PDF

Materials with programmable conductivity and stiffness offer new design opportunities for next-generation engineered systems in soft robotics and electronic devices. However, existing approaches fail to harness variable electrical and mechanical properties synergistically and lack the ability to self-respond to environmental changes. We report an electro-mechano responsive Field's metal hybrid elastomer exhibiting variable and tunable conductivity, strain sensitivity, and stiffness.

View Article and Find Full Text PDF

Flexible pressure sensors based on polymer elastomers filled with conductive fillers show great advantages in their applications in flexible electronic devices. However, integratable high-sensitivity pressure sensors remain understudied. This work improves the conductivity and sensitivity of PDMS-Fe/Ni piezoresistive composites by introducing silver flakes and magnetic-assisted alignment techniques.

View Article and Find Full Text PDF

Soft crawling robots have potential applications for surveillance, rescue, and detection in complex environments. Despite this, most existing soft crawling robots either use nonadjustable feet to passively induce asymmetry in friction to actuate or are only capable of moving on surfaces with specific designs. Thus, robots often lack the ability to move along arbitrary directions in a two-dimensional (2D) plane or in unpredictable environments such as wet surfaces.

View Article and Find Full Text PDF

Portability and low-cost analytic ability are desirable for point-of-care (POC) diagnostics; however, current POC testing platforms often require time-consuming multiple microfabrication steps and rely on bulky and costly equipment. This hinders the capability of microfluidics to prove its power outside of laboratories and narrows the range of applications. This paper details a self-contained microfluidic device, which does not require any external connection or tubing to deliver insert-and-use image-based analysis.

View Article and Find Full Text PDF

Correction for 'Modular off-chip emulsion generator enabled by a revolving needle' by Yuxin Zhang et al., Lab Chip, 2020, 20, 4592-4599, DOI: 10.1039/D0LC00939C.

View Article and Find Full Text PDF

Nanoparticles (NPs) and microparticles (MPs) have been widely used in different areas of research such as materials science, energy, and biotechnology. On-demand synthesis of NPs and MPs with desired chemical and physical properties is essential for different applications. However, most of the conventional methods for producing NPs/MPs require bulky and expensive equipment, which occupies large space and generally need complex operation with dedicated expertise and labour.

View Article and Find Full Text PDF

Microfluidic chips have demonstrated unparalleled abilities in droplet generation, including precise control over droplet size and monodispersity. And yet, their rather complicated microfabrication process and operation can be a barrier for inexperienced researchers, which hinders microdroplets from unleashing their potential in broader fields of research. Here, we attempt to remove this barrier by developing an integrated and modular revolving needle emulsion generator (RNEG) to achieve high-throughput production of uniformly sized droplets in an off-chip manner.

View Article and Find Full Text PDF

Microalgae cells have been recognized as a promising sustainable resource to meet worldwide growing demands for renewable energy, food, livestock feed, water, cosmetics, pharmaceuticals, and materials. In order to ensure high-efficiency and high-quality production of biomass, biofuel, or bio-based products, purification procedures prior to the storage and cultivation of the microalgae from contaminated bacteria are of great importance. The present work proposed and developed a simple, sheathless, and efficient method to separate microalgae Chlorella from bacteria Bacillus Subtilis in a straight channel using the viscoelasticity of the medium.

View Article and Find Full Text PDF

Conductive elastic composites have been used widely in soft electronics and soft robotics. These composites are typically a mixture of conductive fillers within elastomeric substrates. They can sense strain via changes in resistance resulting from separation of the fillers during elongation.

View Article and Find Full Text PDF

Although droplet-based microfluidics has been broadly used as a versatile tool in biology, chemistry, and nanotechnology, its rather complicated microfabrication process and the requirement of specialized hardware and operating skills hinder researchers fully unleashing the potential of this powerful platform. Here, we develop an integrated microdroplet generator enabled by a spinning conical frustum for the versatile production of near-monodisperse microdroplets in a high-throughput and off-chip manner. The construction and operation of this generator are simple and straightforward without the need of microfabrication, and we demonstrate that the generator is able to passively and actively control the size of the produced microdroplets.

View Article and Find Full Text PDF

Functional nanoparticles comprised of liquid metals, such as eutectic gallium indium (EGaIn) and Galinstan, present exciting opportunities in the fields of flexible electronics, sensors, catalysts, and drug delivery systems. Methods used currently for producing liquid metal nanoparticles have significant disadvantages as they rely on both bulky and expensive high-power sonication probe systems, and also generally require the use of small molecules bearing thiol groups to stabilize the nanoparticles. Herein, an innovative microfluidics-enabled platform is described as an inexpensive, easily accessible method for the on-chip mass production of EGaIn nanoparticles with tunable size distributions in an aqueous medium.

View Article and Find Full Text PDF

This work presents a simple, low-cost method to fabricate semi-circular channels using solder paste, which can amalgamate the cooper surface to form a half-cylinder mold using the surface tension of Sn-Pd alloy (the main component in solder paste). This technique enables semi-circular channels to be manufactured with different dimensions. These semi-circular channels will then be integrated with a polymethylmethacrylate frame and machine screws to create miniaturized, portable microfluidic valves for sequential liquid delivery and particle synthesis.

View Article and Find Full Text PDF

In this work, a novel double-layer microfluidic device for enhancing particle focusing was presented. The double-layer device consists of a channel with expansion-contraction array and periodical slanted grooves. The secondary flows induced by the grooves modulate the flow patterns in the expansion-contraction-array (ECA) channel, further affecting the particle migration.

View Article and Find Full Text PDF

Numerous lab-on-a-chip applications benefit from channels with complex structures and configurations in the areas of tissue engineering and clinical diagnostics. The current fabrication approaches require time-consuming, complicated processes and bulky, expensive facilities. In this work, we propose a novel method for the fabrication of complex channels with the assistance of amalgamation of liquid metal with copper tape.

View Article and Find Full Text PDF

Proteinuria is an established risk marker for progressive renal function loss and patients would significantly benefit from a point-of-care testing. Although extensive work has been done to develop the microfluidic devices for the detection of urinary protein, they need the complicated operation and bulky peripherals. Here, we present a rapid, maskless 3D prototyping for fabrication of capillary fluidic circuits using laser engraving.

View Article and Find Full Text PDF