Gestational diabetes mellitus (GDM) is a significant complication during pregnancy that results in abnormalities in the function of multiple systems in the offspring, which include skeletal muscle dysfunction and reduced systemic metabolic capacity. One of the primary causes behind this intergenerational effect is the presence of mitochondrial dysfunction and oxidative stress in the skeletal muscle of the offspring due to exposure to a high-glucose environment in utero. Cerium oxide (CeO) nanozymes are antioxidant agents with polymerase activity that have been widely used in the treatment of inflammatory and aging diseases.
View Article and Find Full Text PDFObjective: Diabetes and other metabolic and inflammatory comorbidities are highly associated with osteoarthritis (OA). However, whether early-life hyperglycemia exposure affects susceptibility to long-term OA is still unknown. The purpose of this study was to explore the fetal origins of OA and provide insights into early-life safeguarding for individual health.
View Article and Find Full Text PDFGestational diabetes mellitus (GDM) with intrauterine hyperglycemia induces a series of changes in the placenta, which have adverse effects on both the mother and the fetus. The aim of this study was to investigate the changes in the placenta in GDM and its gender differences. In this study, we established an intrauterine hyperglycemia model using ICR mice.
View Article and Find Full Text PDFSmall nucleolar RNA host genes (SNHGs) have been implicated in various biological processes, yet their involvement in polycystic ovary syndrome (PCOS) remains elusive. Specifically, SNHG5, a long non-coding RNA implicated in several human cancers, shows elevated expression in granulosa cells (GCs) of PCOS women and induces PCOS-like features when overexpressed in mice. , SNHG5 inhibits GC proliferation and induces apoptosis and cell-cycle arrest at G0/G1 phase, with RNA-seq indicating its impact on DNA replication and repair pathways.
View Article and Find Full Text PDFFollicle-stimulating hormone (FSH) is involved in mammalian reproduction via binding to FSH receptor (FSHR). However, several studies have found that FSH and FSHR play important roles in extragonadal tissue. Here, we identified the expression of FSHR in human and mouse pancreatic islet β-cells.
View Article and Find Full Text PDFAccumulating evidence has shown that inflammation is a key process in polycystic ovary syndrome (PCOS). Nucleotide-binding oligomerization domain-, leucine-rich repeat-, and pyrin domain-containing 3 (NLRP3) inflammasomes play an essential role in inflammation. We investigated the expression of NLRP3 inflammasome in PCOS and its underlying mechanisms.
View Article and Find Full Text PDFBackground: Gene-environment interactions contribute to metabolic disorders such as diabetes and dyslipidemia. In addition to affecting metabolic homeostasis directly, drugs and environmental chemicals can cause persistent alterations in metabolic portfolios across generations in a sex-specific manner. Here, we use inorganic arsenic (iAs) as a prototype drug and chemical to dissect such sex differences.
View Article and Find Full Text PDFThe developmental origin of health and disease (DOHaD) hypothesis refers to the adverse effects of suboptimal developmental environments during embryonic and early fetal stages on the long-term health of offspring. Intrauterine metabolic perturbations can profoundly impact organogenesis in offspring, particularly affecting cardiac development and giving rise to potential structural and functional abnormalities. In this discussion, we contemplate the existing understanding regarding the impact of maternal metabolic disorders, such as obesity, diabetes, or undernutrition, on the developmental and functional aspects of the offspring's heart.
View Article and Find Full Text PDFMounting epidemiological evidence indicates that environmental exposures in early life have roles in diabetes susceptibility in later life. Additionally, environmentally induced diabetic susceptibility could be transmitted to subsequent generations. Epigenetic modifications provide a potential association with the environmental factors and altered gene expression that might cause disease phenotypes.
View Article and Find Full Text PDFFront Endocrinol (Lausanne)
December 2022
Introduction: The prevalence of Gestational Diabetes Mellitus (GDM) is increasing globally, and high levels of triglyceride (TG) and low levels of free thyroxine (FT4) in early pregnancy are associated with an increased risk of GDM; however, the interaction and mediation effects remain unknown. The aim of the present study is to examine the impact of FT4 and TG combined effects on the prevalence of GDM and the corresponding casual paths among women in early pregnancy.
Materials And Methods: This study comprised 40,156 pregnant women for whom early pregnancy thyroid hormones, fasting blood glucose as well as triglyceride were available.
Diabetes mellitus is prevalent among women of reproductive age, and many women are left undiagnosed or untreated. Gestational diabetes has profound and enduring effects on the long-term health of the offspring. However, the link between pregestational diabetes and disease risk into adulthood in the next generation has not been sufficiently investigated.
View Article and Find Full Text PDFIn recent years, the developmental origins of diseases have been increasingly recognized and accepted. As such, it has been suggested that most adulthood chronic diseases such as diabetes, obesity, cardiovascular disease, and even tumors may develop at a very early stage. In addition to intrauterine environmental exposure, germ cells carry an important inheritance role as the primary link between the two generations.
View Article and Find Full Text PDFGrowing evidence suggests that adverse intrauterine environments could affect the long-term health of offspring. Recent evidence indicates that gestational diabetes mellitus (GDM) is associated with neurocognitive changes in offspring. However, the mechanism remains unclear.
View Article and Find Full Text PDFBiochim Biophys Acta Mol Basis Dis
May 2022
Objectives: The Developmental Origins of Health and Disease Science indicate that chronic diseases in adulthood are associated with prenatal and early-life traits. Our study aimed to explore the metabolic phenotype of offspring from advanced paternal age (APA) and the inherited alterations in sperm.
Methods: 3-month-old (Young father, YF-F0) and 21-month-old male (Old Father, OF-F0) C57BL/6J mice were used to study paternal aging's effect on offspring.
Front Endocrinol (Lausanne)
February 2022
Mounting evidence has shown that intrauterine hyperglycemia exposure during critical stages of development may be contributing to the increasing prevalence of diabetes. However, little is known about the mechanisms responsible for offspring metabolic disorder. In this present study, we explored intrauterine hyperglycemia exposure on fetal pancreatic metabolome, and its potential link to impaired glucose tolerance in adult offspring.
View Article and Find Full Text PDFStudies on humans and animals suggest associations between gestational diabetes mellitus (GDM) with increased susceptibility to develop neurological disorders in offspring. However, the molecular mechanisms underpinning the intergenerational effects remain unclear. Using a mouse model of diabetes during pregnancy, we found that intrauterine hyperglycemia exposure resulted in memory impairment in both the first filial (F1) males and the second filial (F2) males from the F1 male offspring.
View Article and Find Full Text PDFIntrathymic differentiation of T lymphocytes begins as early as intrauterine stage, yet the T cell lineage decisions of human fetal thymocytes at different gestational ages are not currently understood. Here, we performed integrative single-cell analyses of thymocytes across gestational ages. We identified conserved candidates underlying the selection of T cell receptor (TCR) lineages in different human fetal stages.
View Article and Find Full Text PDFThe rise of metabolic disorders in modern times is mainly attributed to the environment. However, heritable effects of environmental chemicals on mammalian offsprings' metabolic health are unclear. Inorganic arsenic (iAs) is the top chemical on the Agency for Toxic Substances and Disease Registry priority list of hazardous substances.
View Article and Find Full Text PDFEpigenetics Chromatin
March 2021
Background: Maternal protein restriction diet (PRD) increases the risk of metabolic dysfunction in adulthood, the mechanisms during the early life of offspring are still poorly understood. Apart from genetic factors, epigenetic mechanisms are crucial to offer phenotypic plasticity in response to environmental situations and transmission. Enhancer-associated noncoding RNAs (eRNAs) transcription serves as a robust indicator of enhancer activation, and have potential roles in mediating enhancer functions and gene transcription.
View Article and Find Full Text PDF