The 2A12 aluminum alloy, renowned for its exceptional mechanical properties, encounters significant limitations in applications involving abrasive environments or frequent contact with other surfaces due to its inadequate wear resistance. This shortcoming substantially reduces the service life of components and escalate maintenance costs, highlighting the urgent need for advanced surface modification techniques. This study meticulously investigates the influence of nanoceramic particle size and content on the wear resistance of micro-arc oxidation (MAO) coatings, a surface modification technique renowned for forming dense, adherent ceramic layers on aluminum alloys.
View Article and Find Full Text PDFACS Appl Mater Interfaces
November 2022
Microwave-absorbing materials with wide bandwidth and high absorptivity are increasingly playing an important role in over-the-air (OTA) testing. In this work, a kind of pyramid absorbing material was prepared using flame-retardant absorbers as the filler. In addition, a coating was used to further improve the flame-retardant properties of the microwave-absorbing material.
View Article and Find Full Text PDFWe report a fluorescent probe for mRNA detection. It consists of a gold nanorod (GNR) functionalized with fluorophore-labeled hairpin oligonucleotides (hpDNA) that are complementary to the mRNA of a target gene. This nanoprobe was found to be sensitive to a complementary oligonucleotide, as indicated by significant changes in both fluorescence intensity and lifetime.
View Article and Find Full Text PDFWe demonstrate that time-resolved fluorescence spectroscopy is a powerful tool to investigate the conformation states of hairpin DNA on the surface of gold nanoparticles (AuNPs) and energy transfer processes in Au-nanobeacons. Long-range fluorescence quenching of Cy5 by AuNPs has been found to be in good agreement with electrodynamics modeling. Moreover, time-correlated single-photon counting (TCSPC) is shown to be promising for real-time monitoring of the hybridization kinetics of Au-nanobeacons, with up to 60% increase in decay time component and 300% increase in component fluorescence fraction observed.
View Article and Find Full Text PDFBeilstein J Nanotechnol
March 2015
The enhancement factor (EF) of surface-enhanced Raman scattering (SERS) from two-dimensional (2D) hexagonal silver nanorod (AgNR) arrays were investigated in terms of electromagnetic (EM) mechanism by using the discrete dipole approximation (DDA) method. The dependence of EF on several parameters, i.e.
View Article and Find Full Text PDFPreviously we have demonstrated surface plasmon enhanced energy transfer between fluorophores and gold nanorods under two-photon excitation using fluorescence lifetime imaging microscopy (FLIM) in both solution and intracellular phases. These studies demonstrated that gold nanoparticle-dye energy transfer combinations are appealing, not only in Förster resonance energy transfer (FRET) imaging, but also energy transfer-based fluorescence lifetime sensing of bio-analytes. Here, we apply this approach to study the internalization of gold nanorods (GNRs) in HeLa cells using the early endosome labeling marker GFP.
View Article and Find Full Text PDFJ Nanosci Nanotechnol
December 2011
Erbium doped Al2O3 thin films were fabricated on quartz substrates in dip-coating process by sol-gel method, using the aluminum isopropoxide [Al(OC3H7)3]-derived AlOOH sols with the addition of erbium nitrate [Er(NO3)3 x 5H2O]. The as-deposited films, which erbium concentration was between 20 and 43 mol%, were annealed in air from 600 to 1200 degrees C. The phase structure was detected by X-ray diffraction (XRD) and the PL spectra in the wavelength range of 1400-1700 nm were investigated by spectrophotometer, which was exited by a 760 nm semiconductor LD.
View Article and Find Full Text PDF