Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) neutralizing antibodies are shown to be effective therapeutics for providing coronavirus disease 2019 (COVID-19) protection. However, recurrent variants arise and facilitate significant escape from current antibody therapeutics. Bispecific antibodies (bsAbs) represent a unique platform to increase antibody breadth and to reduce neutralization escape.
View Article and Find Full Text PDFAntibody-based therapeutics and vaccines are essential to combat COVID-19 morbidity and mortality after severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Multiple mutations in SARS-CoV-2 that could impair antibody defenses propagated in human-to-human transmission and spillover or spillback events between humans and animals. To develop prevention and therapeutic strategies, we formed an international consortium to map the epitope landscape on the SARS-CoV-2 spike protein, defining and structurally illustrating seven receptor binding domain (RBD)–directed antibody communities with distinct footprints and competition profiles.
View Article and Find Full Text PDFStructural principles underlying the composition and synergistic mechanisms of protective monoclonal antibody cocktails are poorly defined. Here, we exploited antibody cooperativity to develop a therapeutic antibody cocktail against SARS-CoV-2. On the basis of our previously identified humanized cross-neutralizing antibody H014, we systematically analyzed a fully human naive antibody library and rationally identified a potent neutralizing antibody partner, P17, which confers effective protection in animal model.
View Article and Find Full Text PDFOphiusa disjungens nucleopolyhedrovirus (OpdiNPV) was newly found in Guangdong Province, China. Using BamHI, EcoRI, HindIII, PstI, XhoI, XbaI digestion, the size of the OpdiNPV genome was estimated to be 92,000 base pair. The pstI-G genomic fragment of OpdiNPV was cloned and sequenced.
View Article and Find Full Text PDFUnlabelled: Ophiusa disjungens is one of the main insect pests that attack Myrtaceae species. Nucleopolyhedroviruses (NPVs) of the Baculoviridae family have been used for decades as biological pesticides to control insect pests. A new NPV, named Ophiusa disjungens nucleopolyhedrovirus (OpdiNPV), was recently isolated from OpdiNPV-infected O.
View Article and Find Full Text PDFCurr Drug Targets
April 2012
Acetylcholinesterase (AChE; EC 3.1.1.
View Article and Find Full Text PDFγ-Aminobutyric acid (GABA) is a very important inhibitory neurotransmitter in both vertebrate and invertebrate nervous systems. GABA receptors (GABARs) are known to be the molecular targets of a class of insecticides. Members of the GABAR gene family of the silkworm, Bombyx mori, a model insect of Lepidoptera, have been identified and characterized in this study.
View Article and Find Full Text PDFVP37 protein of Broad bean wilt virus 2 (BBWV-2) is a multifunctional protein that binds single-strand nucleic acids, interacts with viral coat protein (CP) and potentiates the virus cell-to-cell movement in its host plant. In this study, tubule-like structures filled with virus-like particles were observed by Electron Microscopy in plasmodesmata in walls of Chenopodium quinoa leaf cells infected with BBWV-2. Immunogold labeling using VP37 protein specific antibody demonstrates that the VP37 is a component of the tubular structures.
View Article and Find Full Text PDFSeveral organophosphorus (OP) insecticides can selectively kill the silkworm maggot, Exorista sorbillans (Es) (Diptera: Tachinidae), while not obviously affecting the host (Bombyx mori) larvae, but the mechanism is not yet clear. In this study, the cDNA encoding an acetylcholinesterase (AChE) from the field Es was isolated. One point mutation (Gly353Ala) was identified.
View Article and Find Full Text PDFA BmNPV Bacmid with the Bmvp80 gene disrupted was constructed using the ET-recombination system in Escherichia coli to investigate the role of Bmvp80 during the baculovirus life cycle. Disruption of Bmvp80 resulted in single cell infection phenotype, whereas a rescue BmBacmid restored budded virus titers to wild type levels; however, the homologous gene Ac104 (Acvp80) from AcMNPV could not complement the BmBacmid lacking a functional Bmvp80 gene. Electron microscopy of cells transfected with BmNPV lacking functional Bmvp80 revealed that the number of nucleocapsids was markedly lower.
View Article and Find Full Text PDF