Hardware system customized toward the demands of graph neural network learning would promote efficiency and strong temporal processing for graph-structured data. However, most amorphous/polycrystalline oxides-based memristors commonly have unstable conductance regulation due to random growth of conductive filaments. And graph neural networks based on robust and epitaxial film memristors can especially improve energy efficiency due to their high endurance and ultra-low power consumption.
View Article and Find Full Text PDFComputing in memory (CIM) based on memristors is expected to completely solve the dilemma caused by von Neumann architecture. However, the performance of memristors based on traditional conductive filament mechanism is unstable. In this study, we report a nonvolatile high-performance memristor based on ferroelectric tunnel junction (FTJ) Pd/BiLaFeO (6.
View Article and Find Full Text PDF