Background: Tauopathies represent a diverse group of neurodegenerative disorders characterized by the abnormal aggregation of the microtubule-associated protein tau. Despite extensive research, the mechanisms underlying the diversity of neuronal and glial tau pathology in different tauopathies are poorly understood. While there is a growing understanding of tauopathy-specific differences in tau isoforms and fibrillar structures, the specific composition of heterogenous tau lesions remains unknown.
View Article and Find Full Text PDFAlzheimer's disease (AD) risk and progression are significantly influenced by APOE genotype with APOE4 increasing and APOE2 decreasing susceptibility compared to APOE3. While the effect of those genotypes was extensively studied on blood metabolome, less is known about their impact in the brain. Here we investigated the impacts of APOE genotypes and aging on brain metabolic profiles across the lifespan, using human APOE-targeted replacement mice.
View Article and Find Full Text PDFAlzheimer's disease (AD) brains are characterized by neuropathologic and biochemical changes that are highly variable across individuals. Capturing epigenetic factors that associate with this variability can reveal novel biological insights into AD pathophysiology. We conducted an epigenome-wide association study of DNA methylation (DNAm) in 472 AD brains with neuropathologic measures (Braak stage, Thal phase, and cerebral amyloid angiopathy score) and brain biochemical levels of five proteins (APOE, amyloid-β (Aβ)40, Aβ42, tau, and p-tau) core to AD pathogenesis.
View Article and Find Full Text PDFThe adenosine triphosphate-binding cassette transporter A7 (ABCA7) gene is ranked as one of the top susceptibility loci for Alzheimer's disease (AD). While ABCA7 mediates lipid transport across cellular membranes, ABCA7 loss of function has been shown to exacerbate amyloid-β (Aβ) pathology and compromise microglial function. Our family-based study uncovered an extremely rare ABCA7 p.
View Article and Find Full Text PDFBackground: Alzheimer's disease (AD) is characterized by the presence of neurofibrillary tangles made of hyperphosphorylated tau and senile plaques composed of beta-amyloid. These pathognomonic deposits have been implicated in the pathogenesis, although the molecular mechanisms and consequences remain undetermined. UFM1 is an important, but understudied ubiquitin-like protein that is covalently attached to substrates.
View Article and Find Full Text PDFObjective: Alzheimer's disease (AD) often coexists with cerebrovascular diseases. However, the impact of cerebrovascular diseases such as stroke on AD pathology remains poorly understood.
Methods: This study examines the correlation between cerebrovascular diseases and AD pathology.
The hAβ-KI and APP-KI are two amyloid models that harbor mutations in the endogenous mouse App gene. Both hAβ-KI and APP-KI mice contain a humanized Aβ sequence, and APP-KI mice carry three additional familial AD mutations. We herein report that the Aβ levels and Aβ42/Aβ40 ratio in APP-KI homozygotes are dramatically higher than those in hAβ-KI homozygotes at 14 months of age.
View Article and Find Full Text PDFAggregated α-synuclein (α-SYN) proteins, encoded by the gene, are hallmarks of Lewy body disease (LBD), affecting multiple brain regions. However, the specific mechanisms underlying α-SYN pathology in cortical neurons, crucial for LBD-associated dementia, remain unclear. Here, we recapitulated α-SYN pathologies in human induced pluripotent stem cells (iPSCs)-derived cortical organoids generated from patients with LBD with gene triplication.
View Article and Find Full Text PDFIntroduction: The apolipoprotein E gene (APOE) is an established central player in the pathogenesis of Alzheimer's disease (AD), with distinct apoE isoforms exerting diverse effects. apoE influences not only amyloid-beta and tau pathologies but also lipid and energy metabolism, neuroinflammation, cerebral vascular health, and sex-dependent disease manifestations. Furthermore, ancestral background may significantly impact the link between APOE and AD, underscoring the need for more inclusive research.
View Article and Find Full Text PDFBackground: Alzheimer's disease (AD) is characterized by the presence of neurofibrillary tangles made of hyperphosphorylated tau and senile plaques composed of beta-amyloid. These pathognomonic deposits have been implicated in the pathogenesis, although the molecular mechanisms and consequences remain undetermined. UFM1 is an important, but understudied ubiquitin-like protein that is covalently attached to substrates.
View Article and Find Full Text PDFMicroglia replacement strategies are increasingly being considered for the treatment of primary microgliopathies like adult-onset leukoencephalopathy with axonal spheroids and pigmented glia (ALSP). However, available mouse models fail to recapitulate the diverse neuropathologies and reduced microglia numbers observed in patients. In this study, we generated a xenotolerant mouse model lacking the fms-intronic regulatory element (FIRE) enhancer within Csf1r, which develops nearly all the hallmark pathologies associated with ALSP.
View Article and Find Full Text PDFThe immune system substantially influences age-related cognitive decline and Alzheimer's disease (AD) progression, affected by genetic and environmental factors. In a Mayo Clinic Study of Aging cohort, we examined how risk factors like APOE genotype, age, and sex affect inflammatory molecules and AD biomarkers in cerebrospinal fluid (CSF). Among cognitively unimpaired individuals over 65 ( = 298), we measured 365 CSF inflammatory molecules, finding age, sex, and diabetes status predominantly influencing their levels.
View Article and Find Full Text PDFTREM2 is exclusively expressed by microglia in the brain and is strongly associated with Alzheimer's disease risk. In this issue of Immunity, Tagliatti et al. shed light on a novel role of TREM2 in shaping neuronal bioenergetics during development.
View Article and Find Full Text PDFABCA7 loss-of-function variants are associated with increased risk of Alzheimer's disease (AD). Using ABCA7 knockout human iPSC models generated with CRISPR/Cas9, we investigated the impacts of ABCA7 deficiency on neuronal metabolism and function. Lipidomics revealed that mitochondria-related phospholipids, such as phosphatidylglycerol and cardiolipin were reduced in the ABCA7-deficient iPSC-derived cortical organoids.
View Article and Find Full Text PDFMicroglial involvement in Alzheimer's disease (AD) pathology has emerged as a risk-determining pathogenic event. While apolipoprotein E (APOE) is known to modify AD risk, it remains unclear how microglial apoE impacts brain cognition and AD pathology. Here, using conditional mouse models expressing apoE isoforms in microglia and central nervous system-associated macrophages (CAMs), we demonstrate a cell-autonomous effect of apoE3-mediated microglial activation and function, which are negated by apoE4.
View Article and Find Full Text PDFBackground: The apolipoprotein E (APOE) gene is the strongest genetic risk factor for Alzheimer's disease (AD); however, how it modulates brain homeostasis is not clear. The apoE protein is a major lipid carrier in the brain transporting lipids such as cholesterol among different brain cell types.
Methods: We generated three-dimensional (3-D) cerebral organoids from human parental iPSC lines and its isogenic APOE-deficient (APOE) iPSC line.
The prevalence of Alzheimer's disease is greater in women, but the underlying mechanisms remain to be elucidated. We herein demonstrated that α-secretase ADAM10 was downregulated and ADAM10 inhibitor sFRP1 was upregulated in 5xFAD mice. While there were no sex effects on ADAM10 protein and sFRP1 mRNA levels, female 5xFAD and age-matched non-transgenic mice exhibited higher levels of sFRP1 protein than corresponding male mice.
View Article and Find Full Text PDF