The applications of single-cell and spatial technologies in recent times have revolutionized the present understanding of cellular states and the cellular heterogeneity inherent in complex biological systems. These advancements offer unprecedented resolution in the examination of the functional genomics of individual cells and their spatial context within tissues. In this review, we have comprehensively discussed the historical development and recent progress in the field of single-cell and spatial genomics.
View Article and Find Full Text PDFSingle cell chromatin accessibility profiling and transcriptome sequencing are the most widely used technologies for single-cell genomics. Here, we present Microwell-seq3, a high-throughput and facile platform for high-sensitivity single-nucleus chromatin accessibility or full-length transcriptome profiling. The method combines a preindexing strategy and a penetrable chip-in-a-tube for single nucleus loading and DNA amplification and therefore does not require specialized equipment.
View Article and Find Full Text PDFDespite recent advances in single-cell genomics, the lack of maps for single-cell candidate cis-regulatory elements (cCREs) in non-mammal species has limited our exploration of conserved regulatory programs across vertebrates and invertebrates. Here, we developed a combinatorial-hybridization-based method for single-cell assay for transposase-accessible chromatin using sequencing (scATAC-seq) named CH-ATAC-seq, enabling the construction of single-cell accessible chromatin landscapes for zebrafish, Drosophila, and earthworms (Eisenia andrei). By integrating scATAC censuses of humans, monkeys, and mice, we systematically identified 152 distinct main cell types and around 0.
View Article and Find Full Text PDFHighly aggressive gastric cancer (HAGC) is a gastric cancer characterized by bone marrow metastasis and disseminated intravascular coagulation (DIC). Information about the disease is limited. Here we employed single-cell RNA sequencing to investigate peripheral blood mononuclear cells (PBMCs), aiming to unravel the immune response of patients toward HAGC.
View Article and Find Full Text PDFRecent advancements in single-cell technologies have led to rapid developments in the construction of cell atlases. These atlases have the potential to provide detailed information about every cell type in different organisms, enabling the characterization of cellular diversity at the single-cell level. Global efforts in developing comprehensive cell atlases have profound implications for both basic research and clinical applications.
View Article and Find Full Text PDFTumor heterogeneity and its drivers impair tumor progression and cancer therapy. Single-cell RNA sequencing is used to investigate the heterogeneity of tumor ecosystems. However, most methods of scRNA-seq amplify the termini of polyadenylated transcripts, making it challenging to perform total RNA analysis and somatic mutation analysis.
View Article and Find Full Text PDFIn vivo differentiation of human pluripotent stem cells (hPSCs) has unique advantages, such as multilineage differentiation, angiogenesis, and close cell-cell interactions. To systematically investigate multilineage differentiation mechanisms of hPSCs, we constructed the in vivo hPSC differentiation landscape containing 239,670 cells using teratoma models. We identified 43 cell types, inferred 18 cell differentiation trajectories, and characterized common and specific gene regulation patterns during hPSC differentiation at both transcriptional and epigenetic levels.
View Article and Find Full Text PDFSignal Transduct Target Ther
November 2023
The liver is the most tolerogenic of transplanted organs. However, the mechanisms underlying liver transplant tolerance are not well understood. The comparison between liver transplantation tolerance and heart/kidney transplantation rejection will deepen our understanding of tolerance and rejection in solid organs.
View Article and Find Full Text PDFBacteria colonize almost all parts of the human body and can differ significantly. However, the population level transcriptomics measurements can only describe the average bacteria population behaviors, ignoring the heterogeneity among bacteria. Here, we report a droplet-based high-throughput single-microbe RNA-seq assay (smRandom-seq), using random primers for in situ cDNA generation, droplets for single-microbe barcoding, and CRISPR-based rRNA depletion for mRNA enrichment.
View Article and Find Full Text PDFBackground: Down syndrome (DS), which is characterized by various malfunctions, is the most common chromosomal disorder. As the DS population continues to grow and most of those with DS live beyond puberty, early-onset health problems have become apparent. However, the cellular landscape and molecular alterations have not been thoroughly studied.
View Article and Find Full Text PDFSince the release of the complete human genome, the priority of human genomic study has now been shifting towards closing gaps in ethnic diversity. Here, we present a fully phased and well-annotated diploid human genome from a Han Chinese male individual (CN1), in which the assemblies of both haploids achieve the telomere-to-telomere (T2T) level. Comparison of this diploid genome with the CHM13 haploid T2T genome revealed significant variations in the centromere.
View Article and Find Full Text PDFA deeper understanding of genetic regulation and functional mechanisms underlying genetic associations with complex traits and diseases is impeded by cellular heterogeneity and linkage disequilibrium. To address these limits, we introduce Huatuo, a framework to decode genetic variation of gene regulation at cell type and single-nucleotide resolutions by integrating deep-learning-based variant predictions with population-based association analyses. We apply Huatuo to generate a comprehensive cell type-specific genetic variation landscape across human tissues and further evaluate their potential roles in complex diseases and traits.
View Article and Find Full Text PDFFormalin-fixed paraffin-embedded (FFPE) tissues constitute a vast and valuable patient material bank for clinical history and follow-up data. It is still challenging to achieve single cell/nucleus RNA (sc/snRNA) profile in FFPE tissues. Here, we develop a droplet-based snRNA sequencing technology (snRandom-seq) for FFPE tissues by capturing full-length total RNAs with random primers.
View Article and Find Full Text PDFIntestinal stem cell maturation and development coincide with gut microbiota exposure after birth. Here, we investigated how early life microbial exposure, and disruption of this process, impacts the intestinal stem cell niche and development. Single-cell transcriptional analysis revealed impaired stem cell differentiation into Paneth cells and macrophage specification upon antibiotic treatment in early life.
View Article and Find Full Text PDFIt is a challenge to efficiently integrate and present the tremendous amounts of single-cell data generated from multiple tissues of various species. Here, we create a new database named SPEED for single-cell pan-species atlas in the light of ecology and evolution for development and diseases (freely accessible at http://8.142.
View Article and Find Full Text PDFThe zebrafish intestine and liver, as in other vertebrates, are derived from the endoderm. Great effort has been devoted to deciphering the molecular mechanisms controlling the specification and development of the zebrafish intestine and liver; however, genome-wide comparison of the transcriptomes between these two organs at the larval stage remains unexplored. There is a lack of extensive identification of feature genes marking specific cell types in the zebrafish intestine and liver at 5 days post-fertilization, when the larval fish starts food intake.
View Article and Find Full Text PDFDespite extensive efforts to generate and analyze reference genomes, genetic models to predict gene regulation and cell fate decisions are lacking for most species. Here, we generated whole-body single-cell transcriptomic landscapes of zebrafish, Drosophila and earthworm. We then integrated cell landscapes from eight representative metazoan species to study gene regulation across evolution.
View Article and Find Full Text PDFIndividual cells are basic units of life. Despite extensive efforts to characterize the cellular heterogeneity of different organisms, cross-species comparisons of landscape dynamics have not been achieved. Here, we applied single-cell RNA sequencing (scRNA-seq) to map organism-level cell landscapes at multiple life stages for mice, zebrafish and Drosophila.
View Article and Find Full Text PDF