Publications by authors named "Guohui Hu"

Stomatocyte-discocyte-echinocyte (SDE) transformations in human red blood cells (RBCs) have significant influences on blood dynamics and related disorders. The mechanical properties of the RBC membrane, such as shear modulus and bending elasticity, play crucial roles in determining RBC shapes. Recent biophysical findings reveal that building a comprehensive model capable of describing SDE shape transformations is a challenging problem.

View Article and Find Full Text PDF

The transport of nanoparticles in polymer networks has critical implications in biology and medicine, especially through thermophoresis in response to temperature gradients. This study presents a single-particle energy-conserving dissipative particle dynamics (seDPD) method by integrating a single-particle model into the energy-conserving DPD model to simulate the mesoscopic thermophoretic behavior of nanoparticles in polymer matrices. We first validate the newly developed seDPD model through comparisons with analytical solutions for nanoparticle viscosity, thermal diffusivity, and hydrodynamic drag and then demonstrate the effectiveness of the seDPD model in capturing thermophoretic forces induced by temperature gradients.

View Article and Find Full Text PDF

The behavior of deoxyribonucleic acid (DNA) molecules in confinement is of profound importance in various bioengineering and medical applications. In the present study, all-atom molecular dynamics simulation is utilized to investigate the transition of the double-strand DNA (dsDNA) conformation in the electrolytic nanodroplet. Three typical conformations, , , , and , are observed for different droplet sizes and ionic concentrations.

View Article and Find Full Text PDF

Comparisons of large igneous provinces (LIPs) and black shales from different cratons can provide important constraints on Precambrian paleogeographic reconstructions and a better understanding of the environmental effects of large-scale volcanic events. A comparison of intraplate mafic events mostly interpreted as LIPs or portions of LIPs (LIP fragments/remnants due to continental breakup or erosion) from the North China Craton (NCC) and North Australian Craton (NAC) shows good correlation in the age range from 1800 Ma to 1300 Ma, and four robust age matches at ca. 1790-1770 Ma, ca.

View Article and Find Full Text PDF

In this study, we designed and manufactured a series of different microstructure topographical cues for inducing neuronal differentiation of cells in vitro, with different topography, sizes, and structural complexities. We cultured PC12 cells in these microstructure cues and then induced neural differentiation using nerve growth factor (NGF). The pheochromocytoma cell line PC12 is a validated neuronal cell model that is widely used to study neuronal differentiation.

View Article and Find Full Text PDF

Diffusion of nanoparticles (NPs) in a polymer matrix is of significant importance in diverse research fields, such as bio-engineering and nano-technology. Although the prediction of the effective diffusivity has been extensively explored, it remains a great challenge for theoretical investigation. In the present study, the single-particle Dissipative Particle Dynamics (DPD) is employed to study the diffusion of nanoparticles in an unentangled ordered polymer network.

View Article and Find Full Text PDF

Hedgehog (Hh) signaling plays a critical role in embryogenesis and tissue homeostasis, and its deregulation has been associated with tumor growth. The tumor suppressor SuFu inhibits Hh signaling by preventing the nuclear translocation of Gli and suppressing cell proliferation. Regulation of SuFu activity and stability is key to controlling Hh signaling.

View Article and Find Full Text PDF

Aims: Deubiquitinase ubiquitin-specific protease 33 (USP33) is abnormally expressed in various tumors and participates in tumor progression. However, the expression and biological role of USP33 in hepatocellular carcinoma (HCC) are still unclear.

Main Methods: We performed immunohistochemistry, western blotting, and qRT-PCR analysis to determine the expression of USP33 in HCC.

View Article and Find Full Text PDF

Background: Aberrant activation of the Hedgehog (Hh) signaling pathway is frequently observed in hepatocellular carcinoma (HCC), nevertheless, the precise molecular mechanism remains unclear. Forkhead box M1 (FOXM1), a target of the Hh pathway, is a key oncofetal transcription factor and a master cell cycle regulator. Targeting protein for Xenopus kinesin-like protein 2 (TPX2) is an oncogene critical for mitosis.

View Article and Find Full Text PDF

Protein arginine methyltransferases (PRMTs) have been implicated in the development of various cancers. PRMT2, a member of the type I PRMT family, is overexpressed in multiple tumors. However, the expression and role of PRMT2 in hepatocellular carcinoma (HCC) have not been studied.

View Article and Find Full Text PDF

Autophagy is a highly conserved biological process essential to protein, cellular and organismal homeostasis. As autophagy plays a critical role in cellular responses to various external and internal stimuli, it is important to understand the mechanism underlying autophagy regulation. Here, we monitor the stability of 17 key autophagy factors in the yeast S.

View Article and Find Full Text PDF

Heat stress inhibits rice panicle development and reduces the spikelet number per panicle. This study investigated the mechanism involved in heat-induced damage to panicle development and spikelet formation in rice cultivars that differ in heat tolerance. Transcriptome data from developing panicles grown at 40 °C or 32 °C were compared for two rice cultivars: heat-tolerant Huanghuazhan and heat-susceptible IR36.

View Article and Find Full Text PDF

Background: Forkhead box M1 (FOXM1) is a proliferation-associated transcription factor of the forkhead box proteins superfamily, which includes four isoforms FOXM1a, b, c, and d. FOXM1 has been implicated in hepatocellular carcinoma (HCC) progression, but the underlying molecular mechanism remains elusive. In this study, we aim to clarify the molecular basis for FOXM1-mediated HCC progression.

View Article and Find Full Text PDF

GA is important for rice seed germination, and seed embryo growth relies on sugar supplementation via starch hydrolysis in the endosperm. Low temperature reduces the seed germination rates of rice; however, the mechanism of GA metabolism and its impact on sugar utilization of germinating seeds under low temperature conditions remain poorly understood. In this study, low-temperature (15 °C) treatment delayed rice (Oryza sativa L.

View Article and Find Full Text PDF

As a major genetic material, the configuration and the mechanical properties of a double-stranded DNA (dsDNA) molecule in confinement are crucial for the application of nanotechnology and biological engineering. In the present paper, molecular dynamics simulation is utilized to study the configuration of dsDNA in a nanodroplet on a graphene substrate. The results show that the semiflexible dsDNA molecule changes its configuration with radius of gyration ( R) of a few nanometers because of the confined space, that is, the R of the dsDNA molecule decreases with the reduction of the nanodroplet size.

View Article and Find Full Text PDF

The collapse of the bubble induced by the shock wave leads to nano-jet, which is able to perforate cellular membranes. This phenomenon is investigated by Martini coarse-grained molecular dynamic (CG-MD) simulations in the present study. It is found that the occurrence of cavitation nucleation at the nanoscale can be observed during the perforation process.

View Article and Find Full Text PDF

The methods currently employed for site-directed mutagenesis in yeast are laborious and/or inefficient. Recent developments of the CRISPR-based approaches hold great promise for genome editing, but its application in the yeast remains a time-consuming affair. The rate-limiting step in CRISPR-mediated genetic engineering in yeast is the incorporation of the guide sequences, which target Cas9 to relevant chromosomal locus, into the relevant yeast vectors.

View Article and Find Full Text PDF

Background: Recent evidence suggests that the aberrant activation of Hedgehog (Hh) signaling by Gli transcription factors is characteristic of a variety of aggressive human carcinomas, including colorectal cancer (CRC). Forkhead box M1 (FoxM1) controls the expression of a number of cell cycle regulatory proteins, and FoxM1 expression is elevated in a broad range of human malignancies, which suggests that it plays a crucial role in tumorigenesis. However, the mechanisms underlying FoxM1 expression are not fully understood.

View Article and Find Full Text PDF

Cancer develops and progresses often by inactivating p53. Here, we unveil nerve growth factor receptor (NGFR, p75NTR or CD271) as a novel p53 inactivator. p53 activates NGFR transcription, whereas NGFR inactivates p53 by promoting its MDM2-mediated ubiquitin-dependent proteolysis and by directly binding to its central DNA binding domain and preventing its DNA-binding activity.

View Article and Find Full Text PDF

Bicoid is a maternal polarity determinant that mediates the anterior-posterior (AP) patterning in early Drosophila embryo. During oogenesis, its mRNA deposits at the anterior pole of the embryo and then translates to establish the Bicoid morphogen gradient soon after fertilization. Previous investigations indicated that the patterning is induced by the spatial gradient of Bicoid morphogen concentration, where the cytoplasmic convection plays a crucial role.

View Article and Find Full Text PDF

The manipulation of nanoparticles in water is of essential importance in chemical physics, nanotechnology, medical technology, and biotechnology applications. Generally, a particle with net charges or charge polarity can be driven by an electric field. However, many practical particles only have weak and even negligible charge and polarity, which hinders the electric field to exert a force large enough to drive these nanoparticles directly.

View Article and Find Full Text PDF

Multiple lines of evidence implicate that aberrant activation of Hedgehog (Hh) signaling is involved in a variety of human cancers. However, the molecular mechanisms underlying how cancer cells respond to Hh inhibition remain to be elucidated. In this study, we found that blockade of Hh signaling suppresses cell proliferation in human cancer cells.

View Article and Find Full Text PDF

Continuum simulation is employed to study ion transport and fluid flow through a nanopore in a solid-state membrane under an applied potential drop. The results show the existence of concentration polarization layers on the surfaces of the membrane. The nonuniformity of the ionic distribution gives rise to an electric pressure that drives vortical motion in the fluid.

View Article and Find Full Text PDF

Molecular dynamics simulation is utilized to investigate the ionic transport of NaCl in solution through a graphene nanopore under an applied electric field. Results show the formation of concentration polarization layers in the vicinity of the graphene sheet. The nonuniformity of the ion distribution gives rise to an electric pressure which drives vortical motions in the fluid if the electric field is sufficiently strong to overcome the influence of viscosity and thermal fluctuations.

View Article and Find Full Text PDF