Publications by authors named "Guohua Sun"

Background: Global warming-induced environmental stresses have diverse effects on gene expression and regulation in the life processes of various aquatic organisms. N6 adenylate methylation (m6A) modifications are known to influence mRNA transcription, localization, translation, stability, splicing, and nuclear export, which are pivotal in mediating stress responses. Apostichopus japonicus is a significant species in aquaculture and a representative of benthic organisms in ecosystems, thus there is a growing need for research on its heat stress mechanism.

View Article and Find Full Text PDF

Marine mollusks, including oysters, are highly tolerant to high levels of cadmium (Cd), but the molecular mechanisms underlying their molecular response to acute Cd exposure remain unclear. In this study, the Pacific oyster was used as a biological model, exposed to acute Cd stress for 96 h. Transcriptomic analyses of their gills were performed, and metabolomic analyses further validated these results.

View Article and Find Full Text PDF

Near-infrared spectroscopy (NIR) has become an essential tool for non-destructive analysis in various fields, including aquaculture. This study presents a pioneering application of portable NIR spectrometers to analyze glycogen content in the gonadal tissues of the Pacific oyster (), marking the first instance of developing quantitative models for glycogen in tetraploid . The research also provides a comparative analysis with models for diploid and triploid oysters, underscoring the innovative use of portable NIR technology in aquaculture.

View Article and Find Full Text PDF

This work introduces a quantum subroutine for computing the distance between two patterns and integrates it into two quantum versions of the kNN classifier algorithm: one proposed by Schuld et al. and the other proposed by Quezada et al. Notably, our proposed subroutine is tailored to be memory-efficient, requiring fewer qubits for data encoding, while maintaining the overall complexity for both QkNN versions.

View Article and Find Full Text PDF

Tetraploid oysters are artificially produced oysters that do not exist in nature. The successful breeding of 100% triploid oysters resolved the difficulties of traditional drug-induced triploids, such as the presence of drug residues and a low triploid induction rate. However, little is known concerning the biochemical composition and nutrient contents of such tetraploids.

View Article and Find Full Text PDF

Over the years, oysters have faced recurring mass mortality issues during the summer breeding season, with infection emerging as a significant contributing factor. Tubules of gill filaments were confirmed to be in the hematopoietic position in , which produce hemocytes with immune defense capabilities. Additionally, the epithelial cells of oyster gills produce immune effectors to defend against pathogens.

View Article and Find Full Text PDF

The primary influencer of aquaculture quality in is pathogen infection. Both lipopolysaccharides (LPS) and polyinosinic:polycytidylic acid (Poly I:C) are recognized by the pattern recognition receptor (PRR) within immune cells, a system that frequently serves to emulate pathogen invasion. Hemolymph, which functions as a transport mechanism for immune cells, offers vital transcriptome information when is exposed to pathogens, thereby contributing to our comprehension of the species' immune biological mechanisms.

View Article and Find Full Text PDF

Global temperatures have risen as a result of climate change, and the resulting warmer seawater will exert physiological stresses on many aquatic animals, including Apostichopus japonicus. It has been suggested that the sensitivity of aquatic poikilothermal animals to climate change is closely related to mitochondrial function. Therefore, understanding the interaction between elevated temperature and mitochondrial functioning is key to characterizing organisms' responses to heat stress.

View Article and Find Full Text PDF

In this paper, we employ PCA and t-SNE analyses to gain deeper insights into the behavior of entangled and non-entangled mixing operators within the Quantum Approximate Optimization Algorithm (QAOA) at various depths. We utilize a dataset containing optimized parameters generated for max-cut problems with cyclic and complete configurations. This dataset encompasses the resulting RZ, RX, and RY parameters for QAOA models at different depths (1L, 2L, and 3L) with or without an entanglement stage within the mixing operator.

View Article and Find Full Text PDF

Although supercapacitors with acetonitrile-based electrolytes (AN-based SCs) have realized high-voltage (3.0 V) applications by manufacturers, gas generation at high voltages is a critical issue. Also, the exact origins and evolution mechanisms of gas generation during SC aging at 3.

View Article and Find Full Text PDF

is an economically important mollusk distributed in the coastal waters of China. Juveniles are more susceptible to stimulation by the external environment than mature individuals. The ocean salinity fluctuates due to environmental changes.

View Article and Find Full Text PDF

In this work, we investigate the Shannon entropy of four recently proposed hyperbolic potentials through studying position and momentum entropies. Our analysis reveals that the wave functions of the single-well potentials U0,3 exhibit greater localization compared to the double-well potentials U1,2. This difference in localization arises from the depths of the single- and double-well potentials.

View Article and Find Full Text PDF

In this study, we investigate the position and momentum Shannon entropy, denoted as Sx and Sp, respectively, in the context of the fractional Schrödinger equation (FSE) for a hyperbolic double well potential (HDWP). We explore various values of the fractional derivative represented by in our analysis. Our findings reveal intriguing behavior concerning the localization properties of the position entropy density, ρs(x), and the momentum entropy density, ρs(p), for low-lying states.

View Article and Find Full Text PDF

Ceramic LiAlTi(PO) (LATP) with high ionic conductivity and stability in ambient atmosphere is considered to be potent as a solid-state electrolyte of solid-state lithium metal batteries (SSLMBs), but its huge interfacial impedance with electrodes and the unwanted Ti-mediated reduction reaction caused by the lithium (Li) metal anode greatly limit its application in LMBs. Herein, a composite polymer electrolyte (CPET) was integrated by in situ gelation of dual-permeable 1, 3-dioxolane (DOL) in the tandem framework composed of the commercial cellulose membrane TF4030 and a porous three-dimensional (3D) skeleton-structured LATP. The in situ gelled DOL anchored in the tandem framework ensured nice interfacial contact between the as-prepared CPET and electrodes.

View Article and Find Full Text PDF

Triploid oysters have provided the oyster industry with many benefits, such as fast growth rates, meat quality improvement, and increased oyster production and economic benefits, since the first report on triploid oysters was published. The development of polyploid technology has remarkably increased the output of triploid oysters to meet the increasing demand of consumers for Crassostrea gigas in the past decades. At present, research on triploid oyster has mainly focused on breeding and growth, but studies on the immunity of triploid oysters are limited.

View Article and Find Full Text PDF

As a well-known marine metal element, Cd can significantly affect bivalve mollusk life processes such as growth and development. However, the effects of Cd on the molecular mechanisms of the economically important cephalopod species Sepia esculenta remain unclear. In this study, S.

View Article and Find Full Text PDF

In this work we have studied the Shannon information entropy for two hyperbolic single-well potentials in the fractional Schrödinger equation (the fractional derivative number (0 View Article and Find Full Text PDF

Differential scanning calorimetry can be used to measure the impurity contents of pure organic substances on the principle of freezing-point depression. Impurity determination by differential scanning calorimetry with a dynamic method, which has the advantages of speediness and convenience, remains to be explored. Here, a series of acetanilide and dibenzothiophene samples with various purities was prepared through zone melting, and the samples were then analyzed by gas chromatography-mass spectrometry.

View Article and Find Full Text PDF

is a popular economic cephalopod with high yield, delicious meat, and rich nutrition. With the rapid development of heavy industry and medical industry, a large amount of waste has been released into the ocean recklessly in recent years, inducing a significant increase in the content of heavy metals, especially cadmium (Cd) and copper (Cu), in the ocean. This phenomenon significantly affects the growth and development of , causing a serious blow to its artificial breeding.

View Article and Find Full Text PDF

Sepia esculenta is a common economic cephalopod that has received extensive attention due to the tender meat, rich protein content and certain medicinal value thereof. Over the past decade, multiple industries have discharged waste into the ocean in large quantities, thereby significantly increasing the concentration of heavy metals in the ocean. Copper (Cu) is a common heavy metal in the ocean.

View Article and Find Full Text PDF

According to the single-mode approximation applied to two different mo des, each associated with different uniformly accelerating reference frames, we present analytical expression of the Minkowski states for both the ground and first excited states. Applying such an approximation, we study the entanglement property of Bell and Greenberger-Horne-Zeilinger (GHZ) states formed by such states. The corresponding entanglement properties are described by studying negativity and von Neumann entropy.

View Article and Find Full Text PDF

This work presents a quantum associative memory (Alpha-Beta HQAM) that uses the Hamming distance for pattern recovery. The proposal combines the Alpha-Beta associative memory, which reduces the dimensionality of patterns, with a quantum subroutine to calculate the Hamming distance in the recovery phase. Furthermore, patterns are initially stored in the memory as a quantum superposition in order to take advantage of its properties.

View Article and Find Full Text PDF

In this work, we study the quantum information entropies for two different types of hyperbolic single potential wells. We first study the behaviors of the moving particle subject to two different hyperbolic potential wells through focusing on their wave functions. The shapes of these hyperbolic potentials are similar, but we notice that their momentum entropy densities change along with the width of each potential and the magnitude of position entropy density decreases when the momentum entropy magnitude increases.

View Article and Find Full Text PDF

Mollusks have recently received increasing attention because of their unique immune systems. Mollusks such as Amphioctopus fangsiao are economically important cephalopods, and the effects of their egg-protecting behavior on the larval immune response are unclear. Meanwhile, little research has been done on the resistance response of cephalopod larvae infected with pathogenic bacteria such as Vibrio anguillarum.

View Article and Find Full Text PDF

In the era of sustainable development, reducing carbon emissions and achieving carbon neutrality are gradually becoming a consensus for our society. This study explores firms' incentive mechanisms for carbon emission abatement in a two-echelon supply chain under cap-and-trade regulation, where consumers exhibit low-carbon awareness. To boost the manufacturer's motivation for abatement, the retailer can provide four incentive strategies, i.

View Article and Find Full Text PDF