Publications by authors named "Guohong Ren"

Background: Neoadjuvant chemotherapy (NACT) is the standard-of-care treatment for patients with locally advanced breast cancer (LABC), providing crucial benefits in tumor downstaging. Clinical parameters, such as molecular subtypes, influence the therapeutic impact of NACT. Moreover, severe adverse events delay the treatment process and reduce the effectiveness of therapy.

View Article and Find Full Text PDF
Article Synopsis
  • Chronic stress enhances the release and alters the contents of tumor-derived exosomes (TDEs) in breast cancer, suggesting a link between stress and cancer progression.
  • In experiments with tumor-bearing mice, it was found that chronic stress boosts the secretion of TDEs and facilitates lung metastasis through interactions with pulmonary neutrophils.
  • The study reveals that TDEs increase SP1 levels, which leads to increased IL-1β secretion from neutrophils, further promoting cancer spread via the TLR4-NFκβ pathway.
View Article and Find Full Text PDF

Background: Triple-negative breast cancer (TNBC) is recognized as the most aggressive and immunologically infiltrated subtype of breast cancer. A high circulating neutrophil-to-lymphocyte ratio (NLR) is strongly linked to a poor prognosis among patients with breast cancer, emphasizing the critical role of neutrophils. Although the involvement of neutrophils in tumor metastasis is well documented, their interactions with primary tumors and tumor cells are not yet fully understood.

View Article and Find Full Text PDF

The immune checkpoint blockade (ICB) response in human cancers is closely linked to the gut microbiota. Here, we report that the abundance of commensal Lactobacillus johnsonii is positively correlated with the responsiveness of ICB. Supplementation with Lactobacillus johnsonii or tryptophan-derived metabolite indole-3-propionic acid (IPA) enhances the efficacy of CD8 T cell-mediated αPD-1 immunotherapy.

View Article and Find Full Text PDF

Background: Chronic stress promotes most hallmarks of cancer through impacting the malignant tissues, their microenvironment, immunity, lymphatic flow, etc. Existing studies mainly focused on the roles of stress-induced activation of systemic sympathetic nervous system and other stress-induced hormones, the organ specificity of chronic stress in shaping the pre-metastatic niche remains largely unknown. This study investigated the role of chronic stress in remodeling lung pre-metastatic niche of breast cancer.

View Article and Find Full Text PDF

Highly dispersed Cu@FeCo/rGO catalysts have been prepared by two-step reduction method and used for hydrogen production from ammonia borane (NHBH, AB) hydrolysis at 298 K. The activity and reusability of synthesized composite catalyst were much more higher than Cu@FeCo for AB hydrolysis dehydrogenation at 298 K. Kinetic study manifested that AB hydrolysis dehydrogenation with Cu@FeCo/rGO catalysts was approaching to the first order at different catalyst concentrations.

View Article and Find Full Text PDF

Breast cancer lung metastasis has a high mortality rate and lacks effective treatments, for the factors that determine breast cancer lung metastasis are not yet well understood. In this study, data from 1067 primary tumors in four public datasets revealed the distinct microenvironments and immune composition among patients with or without lung metastasis. We used multi-omics data of the TCGA cohort to emphasize the following characteristics that may lead to lung metastasis: more aggressive tumor malignant behaviors, severer genomic instability, higher immunogenicity but showed generalized inhibition of effector functions of immune cells.

View Article and Find Full Text PDF

Pt-based nanomaterials have been proven to be effective catalysts for direct alcohol fuel cells (DAFCs). Specifically, the ternary nanoalloys (NAs) composed of Pt with other noble metals and transition metals can not only reduce the component of Pt but also enhance the electrocatalytic property and durability for alcohol oxidation. Herein, ternary PdPtCu NAs were synthesized through the solvothermal method using ethylene glycol as the solvent and reducing agent.

View Article and Find Full Text PDF

Multicomponent Pt-based nanowires (NWs) have attracted widespread attention as eletrocatalysts toward direct alcohol fuel cells because of their unique one-dimensional structure and high reaction dynamics. Quaternary PtPdAuTe NWs are designed via a facile template method, and NWs with a different composition are obtained by adjusting the feed ratio of metal precursors. The direct displacement reaction of metal precursors with Te NWs and the partial oxidation of Te lead to the formation of quaternary NWs.

View Article and Find Full Text PDF

Exploiting high-performance and inexpensive electrocatalysts for methanol electro-oxidation is conductive to promoting the commercial application of direct methanol fuel cells. Here, we present a facile synthesis of echinus-like PdCu nanocrystals (NCs) via a one-step and template-free method. The echinus-like PdCu NCs possess numerous straight and long branches which can provide abundant catalytic active sites.

View Article and Find Full Text PDF

Novel multifunctional core-shell nanoparticles (NPs) have attracted widespread attention due to their easy-to-modify surface properties and abundant functional groups. This study introduces a facile approach to synthesize Ag@ iron oxide (FeO) @C NPs, and modify with amino-poly (ethylene glycol) (PEG)-carboxyl and folate (FA) on the exposed carbon surface to produce high contrast for excellent stability, good biocompatibility, cancer cell targeting, and synergistic treatment. The multi-armed PEG at the edge of Ag@FeO@C NPs provides the materials an excellent capacity for doxorubicin (DOX) loading.

View Article and Find Full Text PDF

Black phosphorus quantum dots (BPQDs) are gaining popularity for applications in various fields because of their unique advantages. For biomedical applications, good biosafety is a prerequisite for the use of BPQDs in vivo. However, currently, little information is available about their basic properties and biocompatibility, which are of great importance for potential biomedical applications.

View Article and Find Full Text PDF

Zwitterion-modification, as a bioinspired strategy, provides greatly promising platforms for biological detection and sensor applications. A green, low-cost and straight-forward method for synthesis of highly fluorescent biomimetic carbon quantum dots (BCQDs) has been developed via pyrolysis of cytidine diphosphate choline (CDPC) and ethylenediamine. The BCQDs with a strong emission at wavelength of 450 nm shows ultrasensitive sensing capability for vitamin B12 with high selectivity.

View Article and Find Full Text PDF

In this paper, novel organic sulfonic acid group-functionalized silica spheres (SiO2-SO3H) were chosen as a template for fabricating core-shell SiO2-SO3H@Ag composite spheres by the seed-mediated growth method. The SiO2-SO3H spheres could be obtained easily by oxidation of the thiol group-terminated silica spheres (SiO2-SH) with H2O2. Due to the presence of sulfonic acid groups, the [Ag(NH3)2](+) ions were captured on the surface of the silica spheres, followed by in-site reduction to silver nanoseeds for further growth of the silver shell.

View Article and Find Full Text PDF

A facile method to prepare the nonspherical amphiphilic random copolymer of poly(styrene-co-methacrylic acid) (poly(St-co-PMAA)) latex particles with well-defined shapes and high yields by one-step batch emulsifier-free polymerization was demonstrated. In our strategy, only varying the molar ratio of styrene (St) to methacrylic acid (MAA), no seed-particles, no cross-linker, and no multistep control procedures were needed. Due to the presence of carboxyl groups on the surface of (poly(St-co-PMAA) latex particles, these latex particles can be used as templates for fabricating core-shell nonspherical functional materials, such as poly(St-co-PMAA)@SiO2 and poly(St-co-PMAA)@polypyrrole).

View Article and Find Full Text PDF