Publications by authors named "Guohao Yin"

Sodium-ion batteries (SIBs) are a promising electrochemical energy storage system but face great challenges in developing fast-charging anodes. MXene-based composites are a new class of two-dimensional materials that are expected to be widely used in SIB energy storage due to their excellent electrical conductivity and stable structure. However, MXenes tend to experience interlayer stacking during preparation, which can result in poor electrochemical performance and a lower actual capacity compared to the theoretical value.

View Article and Find Full Text PDF

The side effects of chemotherapy drugs have prompted the development of targeted therapies. Distinctive abundance of lipid peroxidation (LPO) in tumour cells represents a potential target for drug delivery. However, LPO-based targeted ligands remain under-exploited.

View Article and Find Full Text PDF

Hydrogen as an environmentally friendly energy carrier, has many significant advantages, such as cleanliness, recyclability, and high calorific value of combustion, which makes it one of the major potential sources of energy supply in the future. Hydrogen evolution reaction (HER) is an important strategy to cope with the global energy shortage and environmental degradation, and given the large cost involved in HER, it is crucial to screen and develop stable and efficient catalysts. Compared with the traditional catalyst development model, the rapid development of data science and technology, especially machine learning technology, has shown great potential in the field of catalyst development in recent years.

View Article and Find Full Text PDF

Aim: To develop a new drug delivery system (DDS) that can load chemotherapy agents and photosensitizer chlorin e6 (Ce6) onto the pores and surfaces of mesoporous silica nanoparticle (MSN) separately.

Methods: Doxorubicin (DOX) was loaded into the pores of MSNs. Then, polyethyleneimine (PEI) was used to coat the surface of MSN to protect DOX, and then manganese dioxide (MnO) nanoparticles were loaded through adding potassium permanganate (KMnO) to bind with Ce6.

View Article and Find Full Text PDF