Publications by authors named "Guohao Du"

Article Synopsis
  • In X-ray microtomography, flat field images are crucial for normalizing sample projections, but issues arise due to the fast data collection and bulky devices in synchrotron facilities.
  • Researchers developed a deep-learning method using an improved pix2pixHD model to generate flat fields from CT projections, significantly improving the accuracy of artefact correction compared to conventional techniques.
  • The new method not only reduces systematic errors during image normalization but also generalizes well across different low Z material samples, making it effective for dynamic CT imaging of various processes.
View Article and Find Full Text PDF

Full-field transmission X-ray microscopy (TXM) in conjunction with X-ray absorption near edge structure (XANES) spectroscopy provides two-dimensional (2D) or three-dimensional (3D) morphological and chemical-specific information within samples at the tens of nanometer scale. This technique has a broad range of applications in materials sciences and battery research. Despite its extensive applicability, 2D XANES imaging is subject to the disadvantage of information overlap when the sample thickness is uneven.

View Article and Find Full Text PDF

The structural and chemical evolution of battery electrodes at the nanoscale plays an important role in affecting the cell performance. Nano-resolution X-ray microscopy has been demonstrated as a powerful technique for characterizing the evolution of battery electrodes under operating conditions with sensitivity to their morphology, compositional distribution and redox heterogeneity. In real-world batteries, the electrode could deform upon battery operation, causing challenges for the image registration which is necessary for several experimental modalities, e.

View Article and Find Full Text PDF

Speckle-tracking X-ray imaging is an attractive candidate for dynamic X-ray imaging owing to its flexible setup and simultaneous yields of phase, transmission and scattering images. However, traditional speckle-tracking imaging methods suffer from phase distortion at locations with abrupt changes in density, which is always the case for real samples, limiting the applications of the speckle-tracking X-ray imaging method. In this paper, we report a deep-learning based method which can achieve dynamic X-ray speckle-tracking imaging with high-accuracy phase retrieval.

View Article and Find Full Text PDF

An in-house designed transmission X-ray microscopy (TXM) instrument has been developed and commissioned at beamline BL18B of the Shanghai Synchrotron Radiation Facility (SSRF). BL18B is a hard (5-14 keV) X-ray bending-magnet beamline recently built with sub-20 nm spatial resolution in TXM. There are two kinds of resolution mode: one based on using a high-resolution-based scintillator-lens-coupled camera, and the other on using a medium-resolution-based X-ray sCMOS camera.

View Article and Find Full Text PDF

Rodents are used extensively as animal models for the preclinical investigation of microvascular-related diseases. However, motion artifacts in currently available imaging methods preclude real-time observation of microvessels in vivo. In this paper, a pixel temporal averaging (PTA) method that enables real-time imaging of microvessels in the mouse brain in vivo is described.

View Article and Find Full Text PDF

Early stages of diseases, including stroke, hypertension, angiogenesis of tumours, spinal cord injuries, ., are closely associated with the lesions of microvasculature. Rodent models of human vascular diseases are extensively used for the preclinical investigation of the disease evolution and therapy with synchrotron radiation.

View Article and Find Full Text PDF

Indirect X-ray imaging detectors consisting of scintillator screens, long-working-distance microscope lenses and scientific high-speed complementary metal-oxide semiconductor (CMOS) cameras are usually used to realize fast X-ray imaging with white-beam synchrotron radiation. However, the detector efficiency is limited by the coupling efficiency of the long-working-distance microscope lenses, which is only about 5%. A long-working-distance microscope lenses system with a large numerical aperture (NA) is designed to increase the coupling efficiency.

View Article and Find Full Text PDF

As a strong tool for the study of nanoscience, the synchrotron hard X-ray nanoprobe technique enables researchers to investigate complex samples with many advantages, such as in situ setup, high sensitivity and the integration of various experimental methods. In recent years, an important goal has been to push the focusing spot size to the diffraction limit of ∼10 nm. The multilayer-based Kirkpatrick-Baez (KB) mirror system is one of the most important methods used to achieve this goal.

View Article and Find Full Text PDF

Nondestructive three-dimensional (3D) micromorphological imaging technique is essential for hepatic alveolar echinococcosis (HAE) disease to determine its damage level and early diagnosis, assess relative drug therapy and optimize treatment strategies. However, the existing morphological researches of HAE mainly depend on the conventional CT, MRI, or ultrasound in hospitals, unfortunately confronting with the common limit of imaging resolution and sensitivity, especially for tiny or early HAE lesions. Now we presented a phase-retrieval-based synchrotron X-ray phase computed tomography (PR-XPCT) with striking contrast-to-noise ratio and high-density resolution to visualize the HAE nondestructive 3D structures and quantitatively segment different pathological characteristics of HAE lesions without staining process at the micrometer scale.

View Article and Find Full Text PDF

Small-angle x-ray scattering computed tomography (SAXS-CT) is a nondestructive method for the nanostructure analysis of heterogeneous materials. However, the limits of a long data acquisition time and vast amounts of data prevent SAXS-CT from becoming a routine experimental method in the applications of synchrotron radiation. In this study, the ordered subsets expectation maximization (OSEM) algorithm is introduced to improve the efficiency of SAXS-CT.

View Article and Find Full Text PDF

Propagation-based phase-contrast computed micro-tomography (PPCT) dominates the non-destructive, three-dimensional inner-structure measurement in synchrotron-based biomedical research due to its simple experimental setup. To quantitatively visualize tiny density variations in soft tissues and organs closely related to early pathological morphology, an experimental study of synchrotron-based X-ray PPCT combined with generalized phase and attenuation duality (PAD) phase retrieval was implemented with the hepatic echinococcosis (HE) infection rat model at different stages. We quantitatively analyzed and evaluated the different pathological characterizations of hepatic echinococcosis during the development of this disease via our PAD-based PPCT and especially provided evidence that hepatic alveolar echinococcosis invades the liver tissue and spreads through blood flow systems with abundant blood supply in the early stage.

View Article and Find Full Text PDF

Monochromatic-beam-based dynamic X-ray computed microtomography (CT) was developed to observe evolution of microstructure inside samples. However, the low flux density results in low efficiency in data collection. To increase efficiency, reducing the number of projections should be a practical solution.

View Article and Find Full Text PDF

Background: This study aimed to determine whether synchrotron radiation (SR)-based X-ray in-line phase-contrast imaging (IL-PCI) can be used to investigate the morphological characteristics of tumor neovascularization in a liver xenograft animal model.

Methods: A human hepatocellular carcinoma HCCLM3 xenograft model was established in nude mice. Xenografts were sampled each week for 4 weeks and fixed to analyze tissue characteristics and neovascularization using SR-based X-ray in-line phase contrast computed tomography (IL-XPCT) without any contrast agent.

View Article and Find Full Text PDF

Ontogenetic variation is documented within many dinosaur species, but extreme ontogenetic changes are rare among dinosaurs, particularly among theropods. Here, we analyze 19 specimens of the Jurassic ceratosaurian theropod Limusaurus inextricabilis, representing six ontogenetic stages based on body size and histological data. Among 78 ontogenetic changes we identify in these specimens, the most unexpected one is the change from fully toothed jaws in the hatchling and juvenile individuals to a completely toothless beaked jaw in the more mature individuals, representing the first fossil record of ontogenetic edentulism among the jawed vertebrates.

View Article and Find Full Text PDF

Knowledge gained through x-ray crystallography fostered structural determination of materials and greatly facilitated the development of modern science and technology in the past century. However, it is only applied to crystalline structures and cannot resolve noncrystalline materials. Here we demonstrate a novel lensless Fourier-transform ghost imaging method with pseudothermal hard x rays that extends x-ray crystallography to noncrystalline samples.

View Article and Find Full Text PDF

Air sacs are thought to be the bellows for insect respiration. However, their exact mechanism of action as a bellows remains unclear. A direct way to investigate this problem is in vivo observation of the changes in their three-dimensional structures.

View Article and Find Full Text PDF

Background: The outstanding functional importance of the brain implies a strong need for brain imaging modalities. However, the current imaging approaches that target the brain in rodents remain suboptimal.

Objective And Methods: In this paper, X-ray propagation-based phase contrast imaging combined with equally sloped tomography (PPCI-EST) was employed to nondestructively investigate the mouse brain.

View Article and Find Full Text PDF

X-ray fluorescence computed tomography (XFCT) is a stimulated emission tomography modality that maps the three-dimensional (3D) distribution of elements. Generally, XFCT is done by scanning a pencil-beam across the sample. This paper presents a feasibility study of full-field XFCT (FF-XFCT) for 3D elemental imaging.

View Article and Find Full Text PDF

Purpose: To establish a method for mouse coronary angiography in vivo using synchrotron radiation, which is essential for physiological and pathological research on coronary diseases.

Methods: 1) The imaging parameters (e.g.

View Article and Find Full Text PDF

Objective: To investigate the potential utility of microangiography with synchrotron radiation to detect murine hepatocellular carcinoma (HCC) angiogenesis using an ex vivo model system.

Methods: An HCC xenograft model was established by implanting HCCLM3 cells into male mice livers (n = 6). Twenty-eight days later, three of the mice were randomly selected for barium sulfate infusion into the liver and tumor via the inferior vena cava followed by ligation of the arteries, veins and common bile duct; the remaining three mice were left untreated and served as controls.

View Article and Find Full Text PDF
Article Synopsis
  • Third-generation synchrotron radiation X-ray phase-contrast microscopy (XPCM) enhances image edges and allows for high-contrast imaging of low-Z materials due to the unique spatial coherence of X-rays.
  • The study analyzed the microstructures of adhesives at the interface and their penetration in wood and bamboo composites using XPCM at the Shanghai Synchrotron Radiation Facility (SSRF).
  • Findings suggest that synchrotron radiation XPCM could be a crucial tool for precision detection in wood-based panel manufacturing.
View Article and Find Full Text PDF

Canine influenza virus (CIV) is an emerging pathogen that causes severe and acute respiratory disease in dogs. In 2006, the H3N2 canine influenza virus was first identified in dogs from Guangdong province in China. Up to now, nine CIVs have been isolated from different populations in Guangdong.

View Article and Find Full Text PDF