Research indicates that urban ecosystems can store large amounts of carbon. However, few studies have examined how the spatial features of park greenspace affect its carbon-carrying capacity, and how those effects vary with the spatial scale. Lidar point clouds and remote sensing images were extracted for the 196 ha green space in the China Green Expo to study carbon storage and sequestration in parks.
View Article and Find Full Text PDFEven if urban catchments are adequately drained by sewer infrastructures, flooding hotspots develop where ongoing development and poor coordination among utilities conspire with land use and land cover, drainage, and rainfall. We combined spatially explicit land use/land cover data from Luohe City (central China) with soil hydrology (as measured, green space hydraulic conductivity), topography, and observed chronic flooding to analyze the relationships between spatial patterns in pervious surface and flooding. When compared to spatial-structural metrics of land use/cover where flooding was commonly observed, we found that some areas expected to remain dry (given soil and elevation characteristics) still experienced localized flooding, indicating hotspots with overwhelmed sewer infrastructure and a lack of pervious surfaces to effectively infiltrate and drain rainfall.
View Article and Find Full Text PDF