Publications by authors named "Guofu Dong"

Article Synopsis
  • - FLASH-RT is a new radiotherapy technique that uses ultra-high dose rates to target tumors while minimizing damage to healthy tissue, a phenomenon known as the FLASH effect.
  • - This method can potentially increase the maximum dose that can be safely administered to control or eliminate tumors, offering a promising alternative to traditional low-dose rate radiotherapy (CONV-RT).
  • - Despite its potential benefits, the exact conditions for achieving the FLASH effect and its underlying biological mechanisms are still unclear, leading to ongoing debate about its effectiveness and challenges in its clinical application.
View Article and Find Full Text PDF

Alternative splicing (AS) is a universal phenomenon in eukaryotes, and it is still challenging to identify AS events. Several methods have been developed to identify AS events, such as expressed sequence tags (EST), microarrays and RNA-seq. However, EST has limitations in identifying low-abundance genes, while microarray and RNA-seq are high-throughput technologies, and PCR-based technology is needed for validation.

View Article and Find Full Text PDF

Modern life is filled with radiofrequency electromagnetic radiation (RF-EMR) in various frequency bands, while the health risks are not clear. In this study, mice were whole-body exposed to 0.9/1.

View Article and Find Full Text PDF

With the rapid popularization of wireless electronic devices, there has been an increasing concern about the impacts of the electromagnetic environment on health. However, most research reports on the biological effects of microwaves have focused on a single frequency point. In reality, people are exposed to complex electromagnetic environments that consist of multiple frequency microwave signals in their daily lives.

View Article and Find Full Text PDF

Background: With the development of communication technology, the public is paying increasing attention to whether electromagnetic radiation is harmful to health. Mobile phone communication has entered the 5G era, and there are almost no reports on electromagnetic radiation at 2650 MHz. Therefore, it is necessary to evaluate the risk of adverse effects of 5G mobile phone EMR exposure on the human brain.

View Article and Find Full Text PDF

A large number of studies on the biological effects of microwaves are carried out using rodents and cells, but the conditions are difficult to control, and the irradiation period is short; the results obtained have always been controversial and difficult to reproduce. In this study, we expose nematodes to an electromagnetic environment for a long-term and multigeneration period to explore the possible biological effects. Wild-type N2 strains of Caenorhabditis elegans are exposed to 9.

View Article and Find Full Text PDF

Because of the extensive application of electromagnetic technology, its health impact on humans has attracted widespread attention. Due to the lack of a model organism with a stable response to electromagnetic waves, the research conclusions on the biological effects of electromagnetic waves have been vague. Therefore, the aim of this study was to investigate the effects of irradiation by pulsed 9.

View Article and Find Full Text PDF

The TE101 mode rectangle EPR cavity was newly developed to achieve X-band in vivo EPR tooth dosimetry for the rescue of nuclear emergency. An aperture for sample detection was opened on the cavity's surface. Its characteristics were evaluated by measuring DPPH and intact human incisor samples.

View Article and Find Full Text PDF

High-power microwaves (HPMs) have been reported to have hazardous effects on multiple human and animal organs. However, the biological effects of 1.5-GHz HPMs on the reproductive system are not clear.

View Article and Find Full Text PDF

The human autophagy-related protein ATG7 (hATG7), an E1-like ubiquitin enzyme, activates two ubiquitin-like proteins, LC3 (Atg8) and Atg12, and promotes autophagosome formation. While hATG7 plays an essential role for the autophagy conjugation system, the production of full-length functional hATG7 in bacterial systems remains challenging. Previous studies have demonstrated that the HIV-1 virus-encoded Tat peptide ('GRKKRRQRRR') can increase the yield and solubility of heterologous proteins.

View Article and Find Full Text PDF

For the purpose of assessing the radiation dose of the victims involved in the nuclear emergency or radiation accident, a new type of X-band EPR resonant cavity for in vivo fingernail EPR dosimetry was designed and a homemade EPR spectrometer for in vivo fingernail detection was constructed. The microwave resonant mode of the cavity was rectangular TE101, and there was a narrow aperture for fingernail detection opened on the cavity's wall at the position of high detection sensitivity. The DPPH dot sample and the fingernail samples were measured based on the in vivo fingernail EPR spectrometer.

View Article and Find Full Text PDF

The accuracy of in vivo EPR tooth dosimetry may be influenced by the volume and geometry variations in teeth, especially when there is considerable non-uniform sensitivity distribution in the active detection area of the cavity. To solve this problem, the present research proposed a normalization method specifically for X-band EPR in vivo tooth dosimetry. The volume and geometry of the measured tooth were reconstructed by digital image processing with images of the tooth impression slices, which were obtained by a custom-made impression module.

View Article and Find Full Text PDF

To investigate the potential cytotoxicity of radiofrequency (RF) radiation on central nervous system, rat pheochromocytoma (PC12) cells were exposed to 2.856 GHz RF radiation at a specific absorption rate (SAR) of 4 W/kg for 8 h a day for 2 days in 35 mm Petri dishes. During exposure, the real-time variation of the culture medium temperature was monitored in the first hour.

View Article and Find Full Text PDF

The development of new dosimeters with good dosimetric properties is important for quality control in radiation applications. A new practical electron spin resonance (ESR) dosimeter based on carbonated hydroxyapatite that simulated the composition and structure of tooth enamel was specially synthesized. The synthesized material was investigated by transmission electron microscope, X-ray diffraction, fourier transform infrared spectroscopy and X-ray photo electron spectroscopy to confirm to the main composition of carbonated hydroxyapatite with CO32- successfully doped into the crystal lattice through optimizing the synthesis process of C/P molar ratio, pH value dynamical adjustment, annealing temperature and time.

View Article and Find Full Text PDF

The X-band in vivo EPR tooth dosimetry is promising as a tool for the initial triage after a large-scale radiation accident. The dielectric losses caused by water on the tooth surface (WTS) are one of the major sources of inaccuracies in this method. The effect was studied by theoretical simulation calculations and experiments with water films of various thicknesses on teeth.

View Article and Find Full Text PDF

In vivo electron paramagnetic resonance tooth dosimetry could be a practical and ideal tool for quick mass triage of victims in the rescue following a disaster event involving irradiation radiation. Magnetic field modulation is an important issue to improve the sensitivity of X-band in vivo tooth dosimetry. We designed a couple of trapezoidal modulation coil sets fixed on the magnet poles that could be used to apply sufficient magnet field modulation into the detection aperture of the resonant cavity.

View Article and Find Full Text PDF

MiR-122 is a novel tumor suppresser and its expression induces cell cycle arrest, or apoptosis, and inhibits cell proliferation in multiple cancer cells, including non-small cell lung cancer (NSCLC) cells. Radioresistance of cancer cell leads to the major drawback of radiotherapy for NSCLC and the induction of radiosensitization could be a useful strategy to fix this problem. The present work investigates the function of miR-122 in inducing radiosensitization in A549 cell, a type of NSCLC cells.

View Article and Find Full Text PDF

Background: It is well known that estrogen receptor α (ERα) participates in the pathogenic progress of breast cancer, hepatocellular carcinoma and head and neck squamous cell carcinoma. In neuroblastoma cells and related cancer clinical specimens, moreover, the ectopic expression of ERα has been identified. However, the detailed function of ERα in the proliferation of neuroblastoma cell is yet unclear.

View Article and Find Full Text PDF

Many experimental factors and uncontrollable factors may introduce errors in the distance measurement by continuous wave electron paramagnetic resonance. To deal with this problem, several C60 nitroxide diradical adducts with rigid structure and definite molecular dimension were used as distance calibration rulers. Based on the improvement of distance calculation program via adding simulation programs of experimental spectra and dipolar broadening function, respectively, the distance calibration method was developed under different conditions such as different solvent, solution concentration, measuring temperature, and microwave power.

View Article and Find Full Text PDF

The increasing use of microwave devices over recent years has meant the bioeffects of microwave exposure have been widely investigated and reported. However the exact biological fate of bone marrow MSCs (BM-MSCs) after microwave radiation remains unknown. In this study, the potential cytotoxicity on MSC proliferation, apoptosis, cell cycle, and in vitro differentiation were assayed following 2.

View Article and Find Full Text PDF

EPR tooth in vivo dosimetry is an attractive approach for initial triage after unexpected nuclear events. An X-band cylindrical TM010 mode resonant cavity was developed for in vivo tooth dosimetry and used in EPR applications for the first time. The cavity had a trapezoidal measuring aperture at the exact position of the cavity's cylindrical wall where strong microwave magnetic field H1 concentrated and weak microwave electric field E1 distributed.

View Article and Find Full Text PDF

The human liver and lymph node sinusoidal endothelial cell C-type lectin (hLSECtin), a type II integral membrane protein, containing a Ca(2+)-dependent carbohydrate recognition domain (CRD), has a well-established biological activity, yet its three-dimensional structure is unknown due to low expression yields and aggregation into inclusion bodies. Previous study has demonstrated that the HIV-1 virus-encoded Tat peptide ('YGRKKRRQRRR') can increase the yields and the solubility of heterologous proteins. However, whether the Tat peptide could promote the high-yield and soluble expression of membrane proteins in Escherichia coli is not known.

View Article and Find Full Text PDF

Conformational changes in proteins profoundly influence their functional profiles. With site-directed spin labeling (SDSL)-electron paramagnetic resonance (EPR) spectroscopy, we investigated the mobility features of individual residue sites in the carbohydrate recognition domain (CRD) of LSECtin, a type II integral membrane protein. The mobility of six different residue sites scatting around the Ca(2+)-1-binding site were investigated by comparing their EPR spectra rotational correlation time τ(c) in order to obtain the information of conformational changes of relevant region.

View Article and Find Full Text PDF