Objectives: Dielectric materials play a crucial role in assessing and refining the measurement performance of dielectric properties for specific tasks. The availability of viable and standardized dielectric materials could greatly enhance medical applications related to dielectric properties. However, obtaining reliable phantoms with designated dielectric properties across a specified frequency range remains challenging.
View Article and Find Full Text PDFEnviron Sci Technol
August 2024
Plastics are invading nearly all ecosystems on earth, acting as emerging repositories for toxic organic pollutants and thereby imposing substantial threats to ecological integrity. The colonization of plastics by microorganisms, forming the plastisphere, has garnered attention due to its potential influence on biogeochemical cycles. However, the capability of plastisphere microorganisms to attenuate organohalide pollutants remains to be evaluated.
View Article and Find Full Text PDFPolybrominated diphenyl ethers (PBDEs) are persistent organic pollutants prevalent in the environment. Organohalide-respiring bacteria (OHRB) can attenuate PBDEs via reductive debromination, but often producing toxic end-products. Debromination of PBDEs to diphenyl ether remains a rare phenomenon and is so far specifically associated with isolated from e-waste polluted sites.
View Article and Find Full Text PDFFermentation stage is a crucial factor for flavor profiles formation of hawthon wine. Thus, comprehensive knowledge of dynamic relationship between nonvolatile (NVOCs) and volatile aroma compounds (VOCs) from hawthorn wine at different fermentation stages was investigated by GC-MS and HPLC coupled with multivariate analysis. The increase of alcohols/esters/acids but decrease of terpenes/aldehydes/ketones was observed as fermentation extension.
View Article and Find Full Text PDFMicroplastics and nanoplastics are emerging pollutants that substantially influence biological element cycling in natural ecosystems. Plastics are also prevalent in sewage, and they accumulate in waste-activated sludge (WAS). However, the impacts of plastics on the methanogenic digestion of WAS and the underpinning microbiome remain underexplored, particularly during long-term operation.
View Article and Find Full Text PDFVisible-light-driven photocatalytic oxidation by photogenerated holes has immense potential for environmental remediation applications. While the electron-mediated photoreduction reactions are often at the spotlight, active holes possess a remarkable oxidation capacity that can degrade recalcitrant organic pollutants, resulting in nontoxic byproducts. However, the random charge transfer and rapid recombination of electron-hole pairs hinder the accumulation of long-lived holes at the reaction center.
View Article and Find Full Text PDFDehalococcoides are capable of dehalogenating various organohalide pollutants under anaerobic conditions, and they have been applied in bioremediation. However, the presence of multiple aromatic organohalides, including polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs), and tetrabromobisphenol A (TBBPA), at contaminated sites may pose challenges to Dehalococcoides-mediated bioremediation due to the lack of knowledge about the influence of co-contamination on bioremediation. In this study, we investigated the bioremediation of aromatic organohalides present as individual and co-contaminants in sediments by bioaugmentation with a single population of Dehalococcoides.
View Article and Find Full Text PDFBackground: Massive amounts of sewage sludge are generated during biological sewage treatment and are commonly subjected to anaerobic digestion, land application, and landfill disposal. Concurrently, persistent organic pollutants (POPs) are frequently found in sludge treatment and disposal systems, posing significant risks to both human health and wildlife. Metabolically versatile microorganisms originating from sewage sludge are inevitably introduced to sludge treatment and disposal systems, potentially affecting the fate of POPs.
View Article and Find Full Text PDFAnthropogenic organohalide pollutants pose a severe threat to public health and ecosystems. bioremediation using organohalide respiring bacteria (OHRB) offers an environmentally friendly and cost-efficient strategy for decontaminating organohalide-polluted sites. The genomic structures of many OHRB suggest that dehalogenation traits can be horizontally transferred among microbial populations, but their occurrence among anaerobic OHRB has not yet been demonstrated experimentally.
View Article and Find Full Text PDFPolychlorinated biphenyls (PCBs) are dioxin-like pollutants that cause persistent harm to life. Organohalide-respiring bacteria (OHRB) can detoxify PCBs via reductive dechlorination, but individual OHRB are potent in dechlorinating only specific PCB congeners, restricting the extent of PCB dechlorination. Moreover, the low biomass of OHRB frequently leads to the slow natural attenuation of PCBs at contaminated sites.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
July 2023
Tissue-mimicking dielectric phantoms are widely used to mimic the relative permittivity and conductivity of human tissues in various medical applications. The artificial material combinations determine the characterization of dialectic phantoms. However, a method that reliably determined the composition of artificial materials with designed values of dielectric properties and frequency is still lacking.
View Article and Find Full Text PDFCocontamination by multiple chlorinated solvents is a prevalent issue in groundwater, presenting a formidable challenge for effective remediation. Despite the recognition of this issue, a comprehensive assessment of microbial detoxification processes involving chloroethenes and associated cocontaminants, along with the underpinning microbiome, remains absent. Moreover, strategies to mitigate the inhibitory effects of cocontaminants have not been reported.
View Article and Find Full Text PDFSulfate widely co-exists with polychlorinated biphenyls (PCBs) at various concentrations in the subsurface environment. Previous studies have suggested that sulfate often hampers microbial degradation of aliphatic chlorinated solvents such as chloroethenes. However, the impact of sulfate on microbial reductive dechlorination of aromatic PCBs and the underlying mechanisms have received limited attention.
View Article and Find Full Text PDFCoupled with the results of a 2D heat transfer model, a 3D electromagnetic stirring round billet model is developed, which is considered for the difference in the conductivity of solidified shell and molten steel. The electromagnetic field distribution features of the billet and the effect of round billet sizes on the electromagnetic field are investigated. It is found that as the solidified shell conductivity of the Φ600 mm round billet increases from 7.
View Article and Find Full Text PDFOpen-ended coaxial probe method is one of the most common modalities in measuring dielectric properties (DPs) of biological tissues. Due to the significant differences between the tumors and normal tissues in DPs, the technique can be used to detect skin cancer in the early stage. Although various studies have been reported, systematic assessment is in urgent need to advance it to clinical applications, for its parameters interactions and detecting limitations remained unclear.
View Article and Find Full Text PDFOrganohalide pollutants are prevalent in coastal regions due to extensive intervention by anthropogenic activities, threatening public health and ecosystems. Gradients in salinity are a natural feature of coasts, but their impacts on the environmental fate of organohalides and the underlying microbial communities remain poorly understood. Here we report the effects of salinity on microbial reductive dechlorination of tetrachloroethene (PCE) and polychlorinated biphenyls (PCBs) in consortia derived from distinct environments (freshwater and marine sediments).
View Article and Find Full Text PDFMicro- and nano-plastics are prevalent in diverse ecosystems, but their impacts on biotransformation of organohalide pollutants and underpinning microbial communities remain poorly understood. Here we investigated the influence of micro- and nano-plastics on microbial reductive dehalogenation at strain and community levels. Generally, microplastics including polyethylene (PE), polystyrene (PS), polylactic acid (PLA), and a weathered microplastic mixture increased dehalogenation rate by 10 - 217% in both the Dehalococcoides isolate and enrichment culture, whereas the effects of polyvinyl chloride (PVC) and a defined microplastic mixture depended on their concentrations and cultures.
View Article and Find Full Text PDFOrganohalide pollutants are prevalent in the environment, causing harms to wildlife and human. Organohalide-respiring bacteria (OHRB) could detoxify these pollutants in anaerobic environments, but the most competent OHRB (i.e.
View Article and Find Full Text PDFWidespread polybrominated diphenyl ethers (PBDEs) contamination poses risks to human health and ecosystems. Bioremediation is widely considered to be a less ecologically disruptive strategy for remediation of organohalide contamination, but bioremediation of PBDE-contaminated sites is limited by a lack of knowledge about PBDE-dehalogenating microbial populations. Here we report anaerobic PBDE debromination in microcosms established from geographically distinct e-waste recycling sites.
View Article and Find Full Text PDFPolybrominated diphenyl ethers (PBDEs) are prevalent environmental pollutants, but bioremediation of PBDEs remains to be reported. Here we report accelerated remediation of a penta-BDE mixture in sediments by bioaugmentation with strains CG1 and TZ50. Bioaugmentation with different amounts of each strain enhanced debromination of penta-BDEs compared with the controls.
View Article and Find Full Text PDFPolybrominated diphenyl ethers (PBDEs) and polychlorinated biphenyls (PCBs) are notorious persistent organic pollutants. However, few organohalide-respiring bacteria that harbor reductive dehalogenases (RDases) capable of dehalogenating these pollutants have been identified. Here, we report reductive dehalogenation of penta-BDEs and PCBs by strain MB.
View Article and Find Full Text PDFPurpose: Allergic asthma is a heterogeneous disease with complex underlying mechanisms. Cytokines are key mediators in immune system and potential indicators of disease status. The aim of this study is to compare the difference of serum cytokine profile in allergic asthma patients with different disease severity and explore candidate biomarkers for disease monitoring and targeting therapeutic agents.
View Article and Find Full Text PDF