Publications by authors named "Guofang Hou"

Inosine monophosphate dehydrogenase 2 (IMPDH2) is highly expressed in human cancers; however, its physiological relevance under growth signaling remains to be investigated. Here, we show that IMPDH2 serine 122 is phosphorylated by CDK1, and this modification attenuates the catalytic activity of IMPDH2 for IMP oxidation and simultaneously represses its allosteric modulation by purine nucleotides. Fibroblast growth factor receptor (FGFR) signaling activation triggers IMPDH2-Ser122 dephosphorylation mediated by protein phosphatase 2A (PP2A), which is dependent on FGFR3-mediated PPP2R1A-Tyr261 phosphorylation leading to PPP2CA-PPP2R1A-IMPDH2 interactions.

View Article and Find Full Text PDF

NADH/NAD redox balance is pivotal for cellular metabolism. Systematic identification of NAD(H) redox regulators, although currently lacking, would help uncover unknown effectors critically implicated in the coordination of growth metabolism. In this study, we performed a genome-scale RNA interference (RNAi) screen to globally survey the genes involved in redox modulation and identified the HES family bHLH transcription factor HES4 as a negative regulator of NADH/NAD ratio.

View Article and Find Full Text PDF
Article Synopsis
  • Proline synthesis plays a crucial role in tumor growth under low oxygen conditions (hypoxia), but the exact mechanisms are still being studied.
  • PYCR1, an enzyme with a consistent presence in the nucleus, is phosphorylated by IGF1R at a specific site (Tyrosine 135) during hypoxia, which enables it to bind to the transcription factor ELK4 and influence target genes.
  • This phosphorylation of PYCR1 supports tumor growth under hypoxia and correlates with the severity of colorectal cancer, demonstrating its important role in regulating gene transcription and contributing to cancer development.
View Article and Find Full Text PDF

Purpose: Methylenetetrahydrofolate dehydrogenase (MTHFD1), a key enzyme on the folate pathway, has been implicated in the tumor development of distinct types of cancers. The single nucleotide polymorphism (SNP) of 1958G > A mutation in the coding region of MTHFD1 (arginine 653 is mutated into glutamine) has been detected in a significant proportion of clinical samples of hepatocellular carcinoma (HCC). METHODS : Hepatoma cell lines, 97H and Hep3B were used.

View Article and Find Full Text PDF

N 6-Methyladenosine (m6A) is the most abundant modification within diverse RNAs including mRNAs and lncRNAs and is regulated by a reversible process with important biological functions. Human YTH domain family 2 (YTHDF2) selectively recognized m6A-RNAs to regulate degradation. However, the possible regulation of YTHDF2 by protein post-translational modification remains unknown.

View Article and Find Full Text PDF

Pancreatic cancer (PC) is a highly aggressive tumor, often difficult to diagnose and treat. Aspartate β-hydroxylase (ASPH) is a type II transmembrane protein and the member of α-ketoglutarate-dependent dioxygenase family, found to be overexpressed in different cancer types, including PC. ASPH appears to be involved in the regulation of proliferation, invasion and metastasis of PC cells through multiple signaling pathways, suggesting its role as a tumor biomarker and therapeutic target.

View Article and Find Full Text PDF

The methyltransferase like 3 (METTL3) is a key component of the large N6-adenosine-methyltransferase complex in mammalian responsible for N6-methyladenosine (m6A) modification in diverse RNAs including mRNA, tRNA, rRNA, small nuclear RNA, microRNA precursor and long non-coding RNA. However, the characteristics of METTL3 in activation and post-translational modification (PTM) is seldom understood. Here we find that METTL3 is modified by SUMO1 mainly at lysine residues K177, K211, K212 and K215, which can be reduced by an SUMO1-specific protease SENP1.

View Article and Find Full Text PDF

Background: MicroRNAs (miRNAs) are important regulators involved in diverse physiological and pathological processes including cancer. SUMO (small ubiquitin-like modifier) is a reversible protein modifier. We recently found that SUMOylation of TARBP2 and DGCR8 is involved in the regulation of the miRNA pathway.

View Article and Find Full Text PDF

Prostate cancer (PCa) is the second leading cause of cancer-related deaths in north American men, and most its related deaths are due to advanced and metastatic PCa. However, the molecular mechanisms underlying PCa progression are still unclear. Here we use a pair of prostate cell lines P69/M12, which have the same genetic background and the highly metastatic cell line M12 is a subline derived from P69, to identify the pathogenesis of PCa.

View Article and Find Full Text PDF

Purpose: This study investigated the additive effect of photodynamic therapy (PDT) plus traditional radiotherapy (RT) for patients with breast cancer and chest wall recurrence.

Methods: A total of 40 patients with recurrent breast cancer were prospectively randomized to receive RT alone (group A, n=20) or PDT and RT in combination (group B, n=20). Traditional RT at a dose of 50 Gy was delivered in 25 fractions with or without exposure to 5-aminolevulinic acid and red light as PDT.

View Article and Find Full Text PDF

This study selected luminal-type breast cancer patients as the study subjects. The patients were divided into groups according to the presence of diabetes and the types of medication used, and the patients' clinicopathological characteristics and prognostic indicators were explored. A total of 5,785 patients with luminal-type breast cancer admitted to Tianjin Medical University Cancer Institute and Hospital between January 2002 and December 2006 were selected as the study subjects.

View Article and Find Full Text PDF

This study was conducted to analyze copy number alterations (CNAs) of the genes involved in the G1/S checkpoint signaling pathway of triple-negative breast cancer (TNBC) and to evaluate their clinical value in the prognosis of TNBC. Quantitative multi-gene fluorescence in situ hybridization was used to study CNAs of the genes involved in the G1/S checkpoint signaling pathway, including cyclin d1 (CCND1), c-Myc, p21, cell-cycle-checkpoint kinase 2 gene, p16, retinoblastoma (Rb1), murine double minute 2 (Mdm2) and p53, in 60 TNBC samples and 60 non-TNBC samples. In comparison with the non-TNBC samples, CNAs of the genes involved in the G1/S checkpoint signaling pathway were more frequently observed in the TNBC samples (p = 0.

View Article and Find Full Text PDF

This study evaluated the effects of an mTOR inhibitor everolimus alone or in combination with letrozole on MCF-7/Aro (MCF-7 cells stably transfected with CYP19) in vitro and in vivo. In vitro studies, full-length CYP19 (aromatase) was cloned in a plasmid transfer vector pH ß-Aro and then transfected into MCF-7 stem cells which were ESA(+)CD44(+)CD24(-/low) sorted by flow cytometry. MTT assays were used to quantify the inhibitory effect of the drugs on MCF-7/Aro stem cells (SCs) and non-stem cells (NSCs).

View Article and Find Full Text PDF

Aims: To determine the clinical, pathological and prognostic features associated with triple-negative breast cancer (TNBC).

Methods: Clinical and histologic data of 21,749 breast cancer patients who were treated at Tianjin Medical University Cancer Institute and Hospital between July 2002 and December 2011 were collected. Patients were divided into two groups: those with TNBC and those with other types of breast cancer.

View Article and Find Full Text PDF

The purpose of this study was to investigate the clinical, pathological, and prognostic characteristics of breast cancer patients with diabetes. In total, the study included 1,013 breast cancer patients with diabetes and 4,621 breast cancer patients without diabetes. Patients with diabetes were further divided into the metformin- and nonmetformin-treated subgroups.

View Article and Find Full Text PDF