Soil is a reservoir of environmental resistomes. Information about their distribution, profiles, and driving forces in undisturbed environments is essential for understanding and managing modern antibiotic resistance genes (ARGs) in human disturbed environments. However, knowledge about the resistomes in pristine soils is limited, particularly at national scale.
View Article and Find Full Text PDFMicroplastics (MPs) are widely distributed in aquatic environments. They may release toxic substances or act as carriers for other organic compounds and pathogens, with potential to cause harm to the ecological environment and human health. A key concern is how MPs interact with organic compounds.
View Article and Find Full Text PDFThe influence of the rhizosphere on the abundance and diversity of antibiotic resistance genes (ARGs) has been recognized but there is a lack of consensus because of broad ranges of plant species and antibiotic concentrations across different habitats and the elusive underlying mechanisms. Here, we profiled antibiotic concentrations and resistomes in the rhizosphere and bulk soils by cultivating 10 types of crops in manure-amended agricultural soils. Rhizosphere effects altered the antibiotic resistome structure, significantly increased the absolute abundance of the antibiotic resistome, and decreased their relative abundance, contrasting previous studies.
View Article and Find Full Text PDF