trying...
16 1 0 1 MCID_676f0864756c8aefe8021314
38597682
Guochun Gong[author] Gong, Guochun[Full Author Name] gong, guochun[Author]
trying2... trying...
38597682 2024 06 09 2024 06 11 1362-4962 52 10 2024 Jun 10 Nucleic acids research Nucleic Acids Res Somatic and intergenerational G4C2 hexanucleotide repeat instability in a human C9orf72 knock-in mouse model. 5732 5755 5732-5755 10.1093/nar/gkae250 Expansion of a G4C2 repeat in the C9orf72 gene is associated with familial Amyotrophic Lateral Sclerosis (ALS) and Frontotemporal Dementia (FTD). To investigate the underlying mechanisms of repeat instability, which occurs both somatically and intergenerationally, we created a novel mouse model of familial ALS/FTD that harbors 96 copies of G4C2 repeats at a humanized C9orf72 locus. In mouse embryonic stem cells, we observed two modes of repeat expansion. First, we noted minor increases in repeat length per expansion event, which was dependent on a mismatch repair pathway protein Msh2. Second, we found major increases in repeat length per event when a DNA double- or single-strand break (DSB/SSB) was artificially introduced proximal to the repeats, and which was dependent on the homology-directed repair (HDR) pathway. In mice, the first mode primarily drove somatic repeat expansion. Major changes in repeat length, including expansion, were observed when SSB was introduced in one-cell embryos, or intergenerationally without DSB/SSB introduction if G4C2 repeats exceeded 400 copies, although spontaneous HDR-mediated expansion has yet to be identified. These findings provide a novel strategy to model repeat expansion in a non-human genome and offer insights into the mechanism behind C9orf72 G4C2 repeat instability. © The Author(s) 2024. Published by Oxford University Press on behalf of Nucleic Acids Research. Kojak Nada N Regeneron Pharmaceuticals, Tarrytown, NY 10591, USA. Kuno Junko J Regeneron Pharmaceuticals, Tarrytown, NY 10591, USA. Fittipaldi Kristina E KE Regeneron Pharmaceuticals, Tarrytown, NY 10591, USA. Khan Ambereen A Regeneron Pharmaceuticals, Tarrytown, NY 10591, USA. Wenger David D Regeneron Pharmaceuticals, Tarrytown, NY 10591, USA. Glasser Michael M Regeneron Pharmaceuticals, Tarrytown, NY 10591, USA. Donnianni Roberto A RA Regeneron Pharmaceuticals, Tarrytown, NY 10591, USA. Tang Yajun Y Regeneron Pharmaceuticals, Tarrytown, NY 10591, USA. Zhang Jade J Regeneron Pharmaceuticals, Tarrytown, NY 10591, USA. Huling Katie K Regeneron Pharmaceuticals, Tarrytown, NY 10591, USA. Ally Roxanne R Regeneron Pharmaceuticals, Tarrytown, NY 10591, USA. Mujica Alejandro O AO Regeneron Pharmaceuticals, Tarrytown, NY 10591, USA. Turner Terrence T Regeneron Pharmaceuticals, Tarrytown, NY 10591, USA. Magardino Gina G Regeneron Pharmaceuticals, Tarrytown, NY 10591, USA. Huang Pei Yi PY Regeneron Pharmaceuticals, Tarrytown, NY 10591, USA. Kerk Sze Yen SY Regeneron Pharmaceuticals, Tarrytown, NY 10591, USA. Droguett Gustavo G Regeneron Pharmaceuticals, Tarrytown, NY 10591, USA. Prissette Marine M Regeneron Pharmaceuticals, Tarrytown, NY 10591, USA. Rojas Jose J Regeneron Pharmaceuticals, Tarrytown, NY 10591, USA. Gomez Teodoro T Regeneron Pharmaceuticals, Tarrytown, NY 10591, USA. Gagliardi Anthony A Regeneron Pharmaceuticals, Tarrytown, NY 10591, USA. Hunt Charleen C Regeneron Pharmaceuticals, Tarrytown, NY 10591, USA. Rabinowitz Jeremy S JS Regeneron Pharmaceuticals, Tarrytown, NY 10591, USA. Gong Guochun G Regeneron Pharmaceuticals, Tarrytown, NY 10591, USA. Poueymirou William W Regeneron Pharmaceuticals, Tarrytown, NY 10591, USA. Chiao Eric E Regeneron Pharmaceuticals, Tarrytown, NY 10591, USA. Zambrowicz Brian B Regeneron Pharmaceuticals, Tarrytown, NY 10591, USA. Siao Chia-Jen CJ Regeneron Pharmaceuticals, Tarrytown, NY 10591, USA. Kajimura Daisuke D 0009-0008-7399-0160 Regeneron Pharmaceuticals, Tarrytown, NY 10591, USA. eng Journal Article England Nucleic Acids Res 0411011 0305-1048 0 C9orf72 Protein 0 C9orf72 protein, human EC 3.6.1.3 Msh2 protein, mouse EC 3.6.1.3 MutS Homolog 2 Protein IM Animals Humans Mice Amyotrophic Lateral Sclerosis genetics C9orf72 Protein genetics Disease Models, Animal DNA Breaks, Double-Stranded DNA Repeat Expansion genetics Frontotemporal Dementia genetics Gene Knock-In Techniques Genomic Instability genetics MutS Homolog 2 Protein genetics 2024 3 28 2024 3 19 2023 6 12 2024 6 10 5 42 2024 4 10 12 43 2024 4 10 9 15 2024 4 10 ppublish 38597682 PMC11162798 10.1093/nar/gkae250 7643286 Lander E.S., Linton L.M., Birren B., Nusbaum C., Zody M.C., Baldwin J., Devon K., Dewar K., Doyle M., FitzHugh W. et al. . Initial sequencing and analysis of the human genome. Nature. 2001; 409:860–921. 11237011 Khristich A.N., Mirkin S.M. On the wrong DNA track: molecular mechanisms of repeat-mediated genome instability. J. Biol. Chem. 2020; 295:4134–4170. PMC7105313 32060097 Depienne C., Mandel J.L. 30 years of repeat expansion disorders: what have we learned and what are the remaining challenges?. Am. J. Hum. Genet. 2021; 108:764–785. PMC8205997 33811808 McMurray C.T. Mechanisms of trinucleotide repeat instability during human development. Nat. Rev. Genet. 2010; 11:786–799. PMC3175376 20953213 Dion V. Tissue specificity in DNA repair: lessons from trinucleotide repeat instability. Trends Genet. 2014; 30:220–229. 24842550 Usdin K., House N.C., Freudenreich C.H. Repeat instability during DNA repair: Insights from model systems. Crit. Rev. Biochem. Mol. Biol. 2015; 50:142–167. PMC4454471 25608779 Heitz D., Devys D., Imbert G., Kretz C., Mandel J.L. Inheritance of the fragile X syndrome: size of the fragile X premutation is a major determinant of the transition to full mutation. J. Med. Genet. 1992; 29:794–801. PMC1016175 1453430 Hagerman R.J., Hagerman P.J. The fragile X premutation: into the phenotypic fold. Curr. Opin. Genet. Dev. 2002; 12:278–283. 12076670 Lozano R., Rosero C.A., Hagerman R.J. Fragile X spectrum disorders. Intractable Rare Dis. Res. 2014; 3:134–146. PMC4298643 25606363 Wheeler A.C., Bailey D.B. Jr, Berry-Kravis E., Greenberg J., Losh M., Mailick M., Mila M., Olichney J.M., Rodriguez-Revenga L., Sherman S et al. . Associated features in females with an FMR1 premutation. J. Neurodev. Disord. 2014; 6:30. PMC4121434 25097672 Hayward B.E., Usdin K. Mechanisms of genome instability in the fragile X-related disorders. Genes (Basel). 2021; 12:1633. PMC8536109 34681027 Brook J.D., McCurrach M.E., Harley H.G., Buckler A.J., Church D., Aburatani H., Hunter K., Stanton V.P., Thirion J.P., Hudson T. et al. . Molecular basis of myotonic dystrophy: expansion of a trinucleotide (CTG) repeat at the 3' end of a transcript encoding a protein kinase family member. Cell. 1992; 68:799–808. 1310900 Tome S., Gourdon G. DM1 phenotype variability and triplet repeat instability: challenges in the development of new therapies. Int. J. Mol. Sci. 2020; 21:457. PMC7014087 31936870 Morales F., Vasquez M., Cuenca P., Campos D., Santamaria C., Del Valle G., Brian R., Sittenfeld M., Monckton D.G. Parental age effects, but no evidence for an intrauterine effect in the transmission of myotonic dystrophy type 1. Eur. J. Hum. Genet. 2015; 23:646–653. PMC4402617 25052313 Joosten I.B.T., Hellebrekers D., de Greef B.T.A., Smeets H.J.M., de Die-Smulders C.E.M., Faber C.G., Gerrits M.M. Parental repeat length instability in myotonic dystrophy type 1 pre- and protomutations. Eur. J. Hum. Genet. 2020; 28:956–962. PMC7316980 32203199 Han J.Y., Jang W., Park J. Intergenerational influence of gender and the DM1 phenotype of the transmitting parent in Korean myotonic dystrophy type 1. Genes (Basel). 2022; 13:1465. PMC9408469 36011377 Mankodi A., Logigian E., Callahan L., McClain C., White R., Henderson D., Krym M., Thornton C.A. Myotonic dystrophy in transgenic mice expressing an expanded CUG repeat. Science. 2000; 289:1769–1773. 10976074 Seznec H., Lia-Baldini A.S., Duros C., Fouquet C., Lacroix C., Hofmann-Radvanyi H., Junien C., Gourdon G. Transgenic mice carrying large human genomic sequences with expanded CTG repeat mimic closely the DM CTG repeat intergenerational and somatic instability. Hum. Mol. Genet. 2000; 9:1185–1194. 10767343 Gomes-Pereira M., Foiry L., Nicole A., Huguet A., Junien C., Munnich A., Gourdon G. CTG trinucleotide repeat “big jumps”: large expansions, small mice. PLoS Genet. 2007; 3:e52. PMC1847694 17411343 Schmidt M.H.M., Pearson C.E. Disease-associated repeat instability and mismatch repair. DNA Repair (Amst.). 2016; 38:117–126. 26774442 Wheeler V.C., Dion V. Modifiers of CAG/CTG repeat instability: insights from mammalian models. J. Huntingtons Dis. 2021; 10:123–148. PMC7990408 33579861 Zhao X., Kumari D., Miller C.J., Kim G.Y., Hayward B., Vitalo A.G., Pinto R.M., Usdin K. Modifiers of somatic repeat instability in mouse models of Friedreich ataxia and the fragile X-related disorders: implications for the mechanism of somatic expansion in Huntington's disease. J Huntingtons Dis. 2021; 10:149–163. PMC7990428 33579860 Manley K., Shirley T.L., Flaherty L., Messer A. Msh2 deficiency prevents in vivo somatic instability of the CAG repeat in Huntington disease transgenic mice. Nat. Genet. 1999; 23:471–473. 10581038 van den Broek W.J., Nelen M.R., Wansink D.G., Coerwinkel M.M., te Riele H., Groenen P.J., Wieringa B. Somatic expansion behaviour of the (CTG)n repeat in myotonic dystrophy knock-in mice is differentially affected by Msh3 and Msh6 mismatch-repair proteins. Hum. Mol. Genet. 2002; 11:191–198. 11809728 Savouret C., Brisson E., Essers J., Kanaar R., Pastink A., te Riele H., Junien C., Gourdon G. CTG repeat instability and size variation timing in DNA repair-deficient mice. EMBO J. 2003; 22:2264–2273. PMC156074 12727892 Wheeler V.C., Lebel L.A., Vrbanac V., Teed A., te Riele H., MacDonald M.E. Mismatch repair gene Msh2 modifies the timing of early disease in Hdh(Q111) striatum. Hum. Mol. Genet. 2003; 12:273–281. 12554681 Dragileva E., Hendricks A., Teed A., Gillis T., Lopez E.T., Friedberg E.C., Kucherlapati R., Edelmann W., Lunetta K.L., MacDonald M.E. et al. . Intergenerational and striatal CAG repeat instability in Huntington's disease knock-in mice involve different DNA repair genes. Neurobiol. Dis. 2009; 33:37–47. PMC2811282 18930147 Bourn R.L., De Biase I., Pinto R.M., Sandi C., Al-Mahdawi S., Pook M.A., Bidichandani S.I. Pms2 suppresses large expansions of the (GAA.TTC)n sequence in neuronal tissues. PLoS One. 2012; 7:e47085. PMC3469490 23071719 Pinto R.M., Dragileva E., Kirby A., Lloret A., Lopez E., St Claire J., Panigrahi G.B., Hou C., Holloway K., Gillis T. et al. . Mismatch repair genes Mlh1 and Mlh3 modify CAG instability in Huntington's disease mice: genome-wide and candidate approaches. PLoS Genet. 2013; 9:e1003930. PMC3814320 24204323 Tome S., Manley K., Simard J.P., Clark G.W., Slean M.M., Swami M., Shelbourne P.F., Tillier E.R., Monckton D.G., Messer A. et al. . MSH3 polymorphisms and protein levels affect CAG repeat instability in Huntington's disease mice. PLoS Genet. 2013; 9:e1003280. PMC3585117 23468640 Ezzatizadeh V., Sandi C., Sandi M., Anjomani-Virmouni S., Al-Mahdawi S., Pook M.A. MutLalpha heterodimers modify the molecular phenotype of Friedreich ataxia. PLoS One. 2014; 9:e100523. PMC4074104 24971578 Lokanga R.A., Zhao X.N., Usdin K. The mismatch repair protein MSH2 is rate limiting for repeat expansion in a fragile X premutation mouse model. Hum. Mutat. 2014; 35:129–136. PMC3951054 24130133 Zhao X.N., Kumari D., Gupta S., Wu D., Evanitsky M., Yang W., Usdin K. Mutsbeta generates both expansions and contractions in a mouse model of the fragile X-associated disorders. Hum. Mol. Genet. 2015; 24:7087–7096. PMC4654059 26420841 Zhao X.N., Lokanga R., Allette K., Gazy I., Wu D., Usdin K. A MutSbeta-dependent contribution of MutSalpha to repeat expansions in fragile X premutation mice?. PLoS Genet. 2016; 12:e1006190. PMC4948851 27427765 Genetic Modifiers of Huntington's Disease, C. Identification of genetic factors that modify clinical onset of Huntington's disease. Cell. 2015; 162:516–526. PMC4524551 26232222 Genetic Modifiers of Huntington’s Disease (GeM-HD) Consortium CAG repeat not polyglutamine length determines timing of Huntington's disease onset. Cell. 2019; 178:887–900. PMC6700281 31398342 Flower M., Lomeikaite V., Ciosi M., Cumming S., Morales F., Lo K., Hensman Moss D., Jones L., Holmans P., Investigators T.-H. et al. . MSH3 modifies somatic instability and disease severity in Huntington's and myotonic dystrophy type 1. Brain. 2019; 142:1876–1886. PMC6598626 31216018 Carvalho C.M., Lupski J.R. Mechanisms underlying structural variant formation in genomic disorders. Nat. Rev. Genet. 2016; 17:224–238. PMC4827625 26924765 Kim J.C., Harris S.T., Dinter T., Shah K.A., Mirkin S.M. The role of break-induced replication in large-scale expansions of (CAG)(n)/(CTG)(n) repeats. Nat. Struct. Mol. Biol. 2017; 24:55–60. PMC5215974 27918542 Kononenko A.V., Ebersole T., Vasquez K.M., Mirkin S.M. Mechanisms of genetic instability caused by (CGG)(n) repeats in an experimental mammalian system. Nat. Struct. Mol. Biol. 2018; 25:669–676. PMC6082162 30061600 Garribba L., Bjerregaard V.A., Goncalves Dinis M.M., Ozer O., Wu W., Sakellariou D., Pena-Diaz J., Hickson I.D., Liu Y. Folate stress induces SLX1- and RAD51-dependent mitotic DNA synthesis at the fragile X locus in human cells. Proc. Natl. Acad. Sci. U.S.A. 2020; 117:16527–16536. PMC7368274 32601218 DeJesus-Hernandez M., Mackenzie I.R., Boeve B.F., Boxer A.L., Baker M., Rutherford N.J., Nicholson A.M., Finch N.A., Flynn H., Adamson J. et al. . Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p-linked FTD and ALS. Neuron. 2011; 72:245–256. PMC3202986 21944778 Renton A.E., Majounie E., Waite A., Simon-Sanchez J., Rollinson S., Gibbs J.R., Schymick J.C., Laaksovirta H., van Swieten J.C., Myllykangas L. et al. . A hexanucleotide repeat expansion in C9ORF72 is the cause of chromosome 9p21-linked ALS-FTD. Neuron. 2011; 72:257–268. PMC3200438 21944779 Smeyers J., Banchi E.G., Latouche M. C9ORF72: what it is, what it does, and why it matters. Front. Cell Neurosci. 2021; 15:661447. PMC8131521 34025358 van Blitterswijk M., DeJesus-Hernandez M., Niemantsverdriet E., Murray M.E., Heckman M.G., Diehl N.N., Brown P.H., Baker M.C., Finch N.A., Bauer P.O. et al. . Association between repeat sizes and clinical and pathological characteristics in carriers of C9ORF72 repeat expansions (Xpansize-72): a cross-sectional cohort study. Lancet Neurol. 2013; 12:978–988. PMC3879782 24011653 Nordin A., Akimoto C., Wuolikainen A., Alstermark H., Jonsson P., Birve A., Marklund S.L., Graffmo K.S., Forsberg K., Brannstrom T. et al. . Extensive size variability of the GGGGCC expansion in C9orf72 in both neuronal and non-neuronal tissues in 18 patients with ALS or FTD. Hum. Mol. Genet. 2015; 24:3133–3142. 25712133 van der Ende E.L., Jackson J.L., White A., Seelaar H., van Blitterswijk M., Van Swieten J.C. Unravelling the clinical spectrum and the role of repeat length in C9ORF72 repeat expansions. J. Neurol. Neurosurg. Psychiatry. 2021; 92:502–509. PMC8053328 33452054 Van Mossevelde S., van der Zee J., Cruts M., Van Broeckhoven C. Relationship between C9orf72 repeat size and clinical phenotype. Curr. Opin. Genet. Dev. 2017; 44:117–124. 28319737 O’Rourke J.G., Bogdanik L., Muhammad A., Gendron T.F., Kim K.J., Austin A., Cady J., Liu E.Y., Zarrow J., Grant S. et al. . C9orf72 BAC transgenic mice display typical pathologic features of ALS/FTD. Neuron. 2015; 88:892–901. PMC4672384 26637796 Peters O.M., Cabrera G.T., Tran H., Gendron T.F., McKeon J.E., Metterville J., Weiss A., Wightman N., Salameh J., Kim J. et al. . Human C9ORF72 hexanucleotide expansion reproduces RNA foci and dipeptide repeat proteins but not neurodegeneration in BAC transgenic mice. Neuron. 2015; 88:902–909. PMC4828340 26637797 Jiang J., Zhu Q., Gendron T.F., Saberi S., McAlonis-Downes M., Seelman A., Stauffer J.E., Jafar-Nejad P., Drenner K., Schulte D. et al. . Gain of toxicity from ALS/FTD-linked repeat expansions in C9ORF72 is alleviated by antisense oligonucleotides targeting GGGGCC-containing RNAs. Neuron. 2016; 90:535–550. PMC4860075 27112497 Liu Y., Pattamatta A., Zu T., Reid T., Bardhi O., Borchelt D.R., Yachnis A.T., Ranum L.P. C9orf72 BAC mouse model with motor deficits and neurodegenerative features of ALS/FTD. Neuron. 2016; 90:521–534. 27112499 Capecchi M.R. Altering the genome by homologous recombination. Science. 1989; 244:1288–1292. 2660260 Shimizu M., Gellibolian R., Oostra B.A., Wells R.D. Cloning, characterization and properties of plasmids containing CGG triplet repeats from the FMR-1 gene. J. Mol. Biol. 1996; 258:614–626. 8636996 Ohshima K., Montermini L., Wells R.D., Pandolfo M. Inhibitory effects of expanded GAA.TTC triplet repeats from intron I of the Friedreich ataxia gene on transcription and replication in vivo. J. Biol. Chem. 1998; 273:14588–14595. 9603975 Nair R.R., Tibbit C., Thompson D., McLeod R., Nakhuda A., Simon M.M., Baloh R.H., Fisher E.M.C., Isaacs A.M., Cunningham T.J. Sizing, stabilising, and cloning repeat-expansions for gene targeting constructs. Methods. 2021; 191:15–22. PMC8215685 32721467 Valenzuela D.M., Murphy A.J., Frendewey D., Gale N.W., Economides A.N., Auerbach W., Poueymirou W.T., Adams N.C., Rojas J., Yasenchak J. et al. . High-throughput engineering of the mouse genome coupled with high-resolution expression analysis. Nat. Biotechnol. 2003; 21:652–659. 12730667 Osoegawa K., Tateno M., Woon P.Y., Frengen E., Mammoser A.G., Catanese J.J., Hayashizaki Y., de Jong P.J. Bacterial artificial chromosome libraries for mouse sequencing and functional analysis. Genome Res. 2000; 10:116–128. PMC310499 10645956 Osoegawa K., Mammoser A.G., Wu C., Frengen E., Zeng C., Catanese J.J., de Jong P.J. A bacterial artificial chromosome library for sequencing the complete human genome. Genome Res. 2001; 11:483–496. PMC311044 11230172 Adams D.J., Quail M.A., Cox T., van der Weyden L., Gorick B.D., Su Q., Chan W.I., Davies R., Bonfield J.K., Law F. et al. . A genome-wide, end-sequenced 129Sv BAC library resource for targeting vector construction. Genomics. 2005; 86:753–758. 16257172 Zhang Y., Buchholz F., Muyrers J.P., Stewart A.F. A new logic for DNA engineering using recombination in Escherichia coli. Nat. Genet. 1998; 20:123–128. 9771703 Montasser M.E., Van Hout C.V., Miloscio L., Howard A.D., Rosenberg A., Callaway M., Shen B., Li N., Locke A.E., Verweij N. et al. . Genetic and functional evidence links a missense variant in B4GALT1 to lower LDL and fibrinogen. Science. 2021; 374:1221–1227. 34855475 Poueymirou W.T., Auerbach W., Frendewey D., Hickey J.F., Escaravage J.M., Esau L., Dore A.T., Stevens S., Adams N.C., Dominguez M.G. et al. . F0 generation mice fully derived from gene-targeted embryonic stem cells allowing immediate phenotypic analyses. Nat. Biotechnol. 2007; 25:91–99. 17187059 Bram E., Javanmardi K., Nicholson K., Culp K., Thibert J.R., Kemppainen J., Le V., Schlageter A., Hadd A., Latham G.J. Comprehensive genotyping of the C9orf72 hexanucleotide repeat region in 2095 ALS samples from the NINDS collection using a two-mode, long-read PCR assay. Amyotroph. Lateral Scler. Frontotemporal Degener. 2019; 20:107–114. PMC6513680 30430876 Cleary E.M., Pal S., Azam T., Moore D.J., Swingler R., Gorrie G., Stephenson L., Colville S., Chandran S., Porteous M. et al. . Improved PCR based methods for detecting C9orf72 hexanucleotide repeat expansions. Mol. Cell. Probes. 2016; 30:218–224. PMC4978699 27288208 Long A., Napierala J.S., Polak U., Hauser L., Koeppen A.H., Lynch D.R., Napierala M. Somatic instability of the expanded GAA repeats in Friedreich's ataxia. PLoS One. 2017; 12:e0189990. PMC5736210 29261783 Giesselmann P., Brandl B., Raimondeau E., Bowen R., Rohrandt C., Tandon R., Kretzmer H., Assum G., Galonska C., Siebert R. et al. . Analysis of short tandem repeat expansions and their methylation state with nanopore sequencing. Nat. Biotechnol. 2019; 37:1478–1481. 31740840 Wheeler V.C., Auerbach W., White J.K., Srinidhi J., Auerbach A., Ryan A., Duyao M.P., Vrbanac V., Weaver M., Gusella J.F. et al. . Length-dependent gametic CAG repeat instability in the Huntington's disease knock-in mouse. Hum. Mol. Genet. 1999; 8:115–122. 9887339 Duyao M., Ambrose C., Myers R., Novelletto A., Persichetti F., Frontali M., Folstein S., Ross C., Franz M., Abbott M. et al. . Trinucleotide repeat length instability and age of onset in Huntington's disease. Nat. Genet. 1993; 4:387–392. 8401587 Neto J.L., Lee J.M., Afridi A., Gillis T., Guide J.R., Dempsey S., Lager B., Alonso I., Wheeler V.C., Pinto R.M. Genetic contributors to intergenerational CAG repeat instability in Huntington's disease knock-in mice. Genetics. 2017; 205:503–516. PMC5289832 27913616 Jeggo P.A., Pearl L.H., Carr A.M. DNA repair, genome stability and cancer: a historical perspective. Nat. Rev. Cancer. 2016; 16:35–42. 26667849 Tubbs A., Nussenzweig A. Endogenous DNA damage as a source of genomic instability in cancer. Cell. 2017; 168:644–656. PMC6591730 28187286 Madabhushi R., Pan L., Tsai L.H. DNA damage and its links to neurodegeneration. Neuron. 2014; 83:266–282. PMC5564444 25033177 Baratz K.H., Tosakulwong N., Ryu E., Brown W.L., Branham K., Chen W., Tran K.D., Schmid-Kubista K.E., Heckenlively J.R., Swaroop A. et al. . E2-2 protein and Fuchs's corneal dystrophy. N. Engl. J. Med. 2010; 363:1016–1024. 20825314 Fautsch M.P., Wieben E.D., Baratz K.H., Bhattacharyya N., Sadan A.N., Hafford-Tear N.J., Tuft S.J., Davidson A.E. TCF4-mediated Fuchs endothelial corneal dystrophy: insights into a common trinucleotide repeat-associated disease. Prog. Retin. Eye Res. 2021; 81:100883. PMC7988464 32735996 Masnovo C., Lobo A.F., Mirkin S.M. Replication dependent and independent mechanisms of GAA repeat instability. DNA Repair (Amst.). 2022; 118:103385. PMC9675320 35952488 Foiry L., Dong L., Savouret C., Hubert L., te Riele H., Junien C., Gourdon G. Msh3 is a limiting factor in the formation of intergenerational CTG expansions in DM1 transgenic mice. Hum. Genet. 2006; 119:520–526. 16552576 Liu L., Malkova A. Break-induced replication: unraveling each step. Trends Genet. 2022; 38:752–765. PMC9197877 35459559 Mayle R., Campbell I.M., Beck C.R., Yu Y., Wilson M., Shaw C.A., Bjergbaek L., Lupski J.R., Ira G. DNA REPAIR. Mus81 and converging forks limit the mutagenicity of replication fork breakage. Science. 2015; 349:742–747. PMC4782627 26273056 Nickoloff J.A., Sharma N., Taylor L., Allen S.J., Hromas R. The safe path at the fork: ensuring replication-associated DNA double-strand breaks are repaired by homologous recombination. Front. Genet. 2021; 12:748033. PMC8502867 34646312 Deem A., Keszthelyi A., Blackgrove T., Vayl A., Coffey B., Mathur R., Chabes A., Malkova A. Break-induced replication is highly inaccurate. PLoS Biol. 2011; 9:e1000594. PMC3039667 21347245 Beck C.R., Carvalho C.M.B., Akdemir Z.C., Sedlazeck F.J., Song X., Meng Q., Hu J., Doddapaneni H., Chong Z., Chen E.S. et al. . Megabase length hypermutation accompanies human structural variation at 17p11.2. Cell. 2019; 176:1310–1324. PMC6438178 30827684 Costantino L., Sotiriou S.K., Rantala J.K., Magin S., Mladenov E., Helleday T., Haber J.E., Iliakis G., Kallioniemi O.P., Halazonetis T.D. Break-induced replication repair of damaged forks induces genomic duplications in human cells. Science. 2014; 343:88–91. PMC4047655 24310611 Bhowmick R., Minocherhomji S., Hickson I.D. RAD52 facilitates mitotic DNA synthesis following replication stress. Mol. Cell. 2016; 64:1117–1126. 27984745 Li S., Wang H., Jehi S., Li J., Liu S., Wang Z., Truong L., Chiba T., Wang Z., Wu X. PIF1 helicase promotes break-induced replication in mammalian cells. EMBO J. 2021; 40:e104509. PMC8047440 33470420 Tsuzuki T., Fujii Y., Sakumi K., Tominaga Y., Nakao K., Sekiguchi M., Matsushiro A., Yoshimura Y., Morita T. Targeted disruption of the Rad51 gene leads to lethality in embryonic mice. Proc. Natl. Acad. Sci. U.S.A. 1996; 93:6236–6240. PMC39005 8692798 Pattamatta A., Nguyen L., Olafson H.R., Scotti M.M., Laboissonniere L.A., Richardson J., Berglund J.A., Zu T., Wang E.T., Ranum L.P.W. Repeat length increases disease penetrance and severity in C9orf72 ALS/FTD BAC transgenic mice. Hum. Mol. Genet. 2021; 29:3900–3918. PMC7906756 33378537 Kalef-Ezra E., Edzeamey F.J., Valle A., Khonsari H., Kleine P., Oggianu C., Al-Mahdawi S., Pook M.A., Anjomani Virmouni S. A new FRDA mouse model [Fxn (null):YG8s(GAA) >800] with more than 800 GAA repeats. Front. Neurosci. 2023; 17:930422. PMC9909538 36777637 Freudenreich C.H., Kantrow S.M., Zakian V.A. Expansion and length-dependent fragility of CTG repeats in yeast. Science. 1998; 279:853–856. 9452383 Gadgil R.Y., Romer E.J., Goodman C.C., Rider S.D. Jr, Damewood F.J., Barthelemy J.R., Shin-Ya K., Hanenberg H., Leffak M Replication stress at microsatellites causes DNA double-strand breaks and break-induced replication. J. Biol. Chem. 2020; 295:15378–15397. PMC7650239 32873711 van den Broek W.J., Wansink D.G., Wieringa B. Somatic CTG*CAG repeat instability in a mouse model for myotonic dystrophy type 1 is associated with changes in cell nuclearity and DNA ploidy. BMC Mol. Biol. 2007; 8:61. PMC1940261 17645799 Lee J.M., Pinto R.M., Gillis T., St Claire J.C., Wheeler V.C. Quantification of age-dependent somatic CAG repeat instability in Hdh CAG knock-in mice reveals different expansion dynamics in striatum and liver. PLoS One. 2011; 6:e23647. PMC3163641 21897851 Dols-Icardo O., Garcia-Redondo A., Rojas-Garcia R., Sanchez-Valle R., Noguera A., Gomez-Tortosa E., Pastor P., Hernandez I., Esteban-Perez J., Suarez-Calvet M. et al. . Characterization of the repeat expansion size in C9orf72 in amyotrophic lateral sclerosis and frontotemporal dementia. Hum. Mol. Genet. 2014; 23:749–754. 24057670 Fratta P., Polke J.M., Newcombe J., Mizielinska S., Lashley T., Poulter M., Beck J., Preza E., Devoy A., Sidle K. et al. . Screening a UK amyotrophic lateral sclerosis cohort provides evidence of multiple origins of the C9orf72 expansion. Neurobiol. Aging. 2015; 36:546.e1–546.e7. PMC4270445 25179228 Gijselinck I., Van Mossevelde S., van der Zee J., Sieben A., Engelborghs S., De Bleecker J., Ivanoiu A., Deryck O., Edbauer D., Zhang M. et al. . The C9orf72 repeat size correlates with onset age of disease, DNA methylation and transcriptional downregulation of the promoter. Mol. Psychiatry. 2016; 21:1112–1124. PMC4960451 26481318 Gijselinck I., Cruts M., Van Broeckhoven C. The genetics of C9orf72 expansions. Cold Spring Harb. Perspect. Med. 2018; 8:a026757. PMC5880162 28130313 Jackson J.L., Finch N.A., Baker M.C., Kachergus J.M., DeJesus-Hernandez M., Pereira K., Christopher E., Prudencio M., Heckman M.G., Thompson E.A. et al. . Elevated methylation levels, reduced expression levels, and frequent contractions in a clinical cohort of C9orf72 expansion carriers. Mol. Neurodegener. 2020; 15:7. PMC6993399 32000838 Shastri N., Tsai Y.C., Hile S., Jordan D., Powell B., Chen J., Maloney D., Dose M., Lo Y., Anastassiadis T. et al. . Genome-wide identification of structure-forming repeats as principal sites of fork collapse upon ATR inhibition. Mol. Cell. 2018; 72:222–238. PMC6407864 30293786 Tubbs A., Sridharan S., van Wietmarschen N., Maman Y., Callen E., Stanlie A., Wu W., Wu X., Day A., Wong N. et al. . Dual roles of poly(dA:dT) tracts in replication initiation and fork collapse. Cell. 2018; 174:1127–1142. PMC6591735 30078706 Kaushal S., Freudenreich C.H. The role of fork stalling and DNA structures in causing chromosome fragility. Genes Chromosomes Cancer. 2019; 58:270–283. PMC7083089 30536896 Lokanga R.A., Kumari D., Usdin K. Common threads: aphidicolin-inducible and folate-sensitive fragile sites in the human genome. Front. Genet. 2021; 12:708860. PMC8456018 34567068 Lopez-Gonzalez R., Lu Y., Gendron T.F., Karydas A., Tran H., Yang D., Petrucelli L., Miller B.L., Almeida S., Gao F.B. Poly(GR) in C9ORF72-related ALS/FTD compromises mitochondrial function and increases oxidative stress and DNA damage in iPSC-derived motor neurons. Neuron. 2016; 92:383–391. PMC5111366 27720481 Farg M.A., Konopka A., Soo K.Y., Ito D., Atkin J.D. The DNA damage response (DDR) is induced by the C9orf72 repeat expansion in amyotrophic lateral sclerosis. Hum. Mol. Genet. 2017; 26:2882–2896. 28481984 Pham N., Yan Z., Yu Y., Faria Afreen M., Malkova A., Haber J.E., Ira G. Mechanisms restraining break-induced replication at two-ended DNA double-strand breaks. EMBO J. 2021; 40:e104847. PMC8126933 33844333 Symington L.S. End resection at double-strand breaks: mechanism and regulation. Cold Spring Harb. Perspect. Biol. 2014; 6:a016436. PMC4107989 25085909 Caldecott K.W. Causes and consequences of DNA single-strand breaks. Trends Biochem. Sci. 2024; 49:68–78. 38040599 Whelan D.R., Lee W.T.C., Yin Y., Ofri D.M., Bermudez-Hernandez K., Keegan S., Fenyo D., Rothenberg E. Spatiotemporal dynamics of homologous recombination repair at single collapsed replication forks. Nat. Commun. 2018; 9:3882. PMC6155164 30250272 Gacy A.M., Goellner G., Juranic N., Macura S., McMurray C.T. Trinucleotide repeats that expand in human disease form hairpin structures in vitro. Cell. 1995; 81:533–540. 7758107 Poggi L., Richard G.F. Alternative DNA structures in vivo: molecular evidence and remaining questions. Microbiol. Mol. Biol. Rev. 2021; 85:e00110-20. PMC8549851 33361270 Lo Scrudato M., Poulard K., Sourd C., Tome S., Klein A.F., Corre G., Huguet A., Furling D., Gourdon G., Buj-Bello A. Genome editing of expanded CTG repeats within the human DMPK gene reduces nuclear RNA foci in the muscle of DM1 mice. Mol. Ther. 2019; 27:1372–1388. PMC6697452 31253581 Meijboom K.E., Abdallah A., Fordham N.P., Nagase H., Rodriguez T., Kraus C., Gendron T.F., Krishnan G., Esanov R., Andrade N.S. et al. . CRISPR/Cas9-mediated excision of ALS/FTD-causing hexanucleotide repeat expansion in C9ORF72 rescues major disease mechanisms in vivo and in vitro. Nat. Commun. 2022; 13:6286. PMC9587249 36271076 Kosicki M., Tomberg K., Bradley A. Repair of double-strand breaks induced by CRISPR-Cas9 leads to large deletions and complex rearrangements. Nat. Biotechnol. 2018; 36:765–771. PMC6390938 30010673 Owens D.D.G., Caulder A., Frontera V., Harman J.R., Allan A.J., Bucakci A., Greder L., Codner G.F., Hublitz P., McHugh P.J. et al. . Microhomologies are prevalent at Cas9-induced larger deletions. Nucleic Acids Res. 2019; 47:7402–7417. PMC6698657 31127293 34855475 2021 12 17 2022 03 02 1095-9203 374 6572 2021 Dec 03 Science (New York, N.Y.) Science Genetic and functional evidence links a missense variant in B4GALT1 to lower LDL and fibrinogen. 1221 1227 1221-1227 10.1126/science.abe0348 Increased blood levels of low-density lipoprotein cholesterol (LDL-C) and fibrinogen are independent risk factors for cardiovascular disease. We identified associations between an Amish-enriched missense variant (p.Asn352Ser) in a functional domain of beta-1,4-galactosyltransferase 1 (B4GALT1 ) and 13.9 milligrams per deciliter lower LDL-C (P = 4.1 × 10–19 ) and 29 milligrams per deciliter lower plasma fibrinogen (P = 1.3 × 10–5 ). B4GALT1 gene–based analysis in 544,955 subjects showed an association with decreased coronary artery disease (odds ratio = 0.64, P = 0.006). The mutant protein had 50% lower galactosyltransferase activity compared with the wild-type protein. N-linked glycan profiling of human serum found serine 352 allele to be associated with decreased galactosylation and sialylation of apolipoprotein B100, fibrinogen, immunoglobulin G, and transferrin. B4galt1 353 Ser knock-in mice showed decreases in LDL-C and fibrinogen. Our findings suggest that targeted modulation of protein galactosylation may represent a therapeutic approach to decreasing cardiovascular disease. Montasser May E ME 0000-0002-9558-5456 Division of Endocrinology, Diabetes and Nutrition and Program for Personalized and Genomic Medicine, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA. Van Hout Cristopher V CV 0000-0001-9689-5344 Regeneron Genetics Center, LLC, Tarrytown, NY 10591, USA. Laboratorio Internacional de Investigatión sobre el Genoma Humano, Campus Juriquilla de la Universidad Nacional Autónoma de México, Querétaro, Querétaro 76230, México. Miloscio Lawrence L Regeneron Genetics Center, LLC, Tarrytown, NY 10591, USA. Howard Alicia D AD 0000-0002-1616-5729 Division of Endocrinology, Diabetes and Nutrition and Program for Personalized and Genomic Medicine, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA. Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, MD 20993, USA. Rosenberg Avraham A Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, USA. Callaway Myrasol M Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, USA. Shen Biao B 0000-0001-5791-1583 Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, USA. Li Ning N 0000-0001-6750-4308 Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, USA. Locke Adam E AE 0000-0001-6227-198X Regeneron Genetics Center, LLC, Tarrytown, NY 10591, USA. Verweij Niek N 0000-0002-4303-7685 Regeneron Genetics Center, LLC, Tarrytown, NY 10591, USA. De Tanima T 0000-0001-9240-3744 Regeneron Genetics Center, LLC, Tarrytown, NY 10591, USA. Ferreira Manuel A MA 0000-0001-9059-1825 Regeneron Genetics Center, LLC, Tarrytown, NY 10591, USA. Lotta Luca A LA 0000-0002-2619-5956 Regeneron Genetics Center, LLC, Tarrytown, NY 10591, USA. Baras Aris A Regeneron Genetics Center, LLC, Tarrytown, NY 10591, USA. Daly Thomas J TJ 0000-0002-0208-6827 Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, USA. Hartford Suzanne A SA 0000-0001-8816-8585 Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, USA. Lin Wei W 0000-0002-1953-9765 Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, USA. Mao Yuan Y Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, USA. Ye Bin B 0000-0003-1083-8432 Regeneron Genetics Center, LLC, Tarrytown, NY 10591, USA. White Derek D Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, USA. Gong Guochun G 0000-0003-4982-0491 Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, USA. Perry James A JA 0000-0001-5050-2074 Division of Endocrinology, Diabetes and Nutrition and Program for Personalized and Genomic Medicine, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA. Ryan Kathleen A KA 0000-0003-1158-8455 Division of Endocrinology, Diabetes and Nutrition and Program for Personalized and Genomic Medicine, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA. Fang Qing Q Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, USA. Tzoneva Gannie G 0000-0001-5784-7796 Regeneron Genetics Center, LLC, Tarrytown, NY 10591, USA. Pefanis Evangelos E Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, USA. Hunt Charleen C 0000-0003-0537-862X Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, USA. Tang Yajun Y Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, USA. Lee Lynn L 0000-0001-8433-9367 Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, USA. Regeneron Genetics Center Collaboration‡ Sztalryd-Woodle Carole C Division of Endocrinology, Diabetes and Nutrition and Program for Personalized and Genomic Medicine, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA. US Department of Veterans Affairs, Washington, DC 20420 USA. Mitchell Braxton D BD 0000-0003-4920-4744 Division of Endocrinology, Diabetes and Nutrition and Program for Personalized and Genomic Medicine, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA. Geriatrics Research and Education Clinical Center, VA Medical Center, Baltimore, MD 21201, USA. Healy Matthew M 0000-0001-6439-5038 Enveda Biosciences, Boulder, CO 80301, USA. Streeten Elizabeth A EA 0000-0002-9771-6958 Division of Endocrinology, Diabetes and Nutrition and Program for Personalized and Genomic Medicine, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA. Division of Genetics, Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD 21201, USA. Taylor Simeon I SI 0000-0001-7500-7854 Division of Endocrinology, Diabetes and Nutrition and Program for Personalized and Genomic Medicine, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA. O'Connell Jeffrey R JR Division of Endocrinology, Diabetes and Nutrition and Program for Personalized and Genomic Medicine, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA. Economides Aris N AN 0000-0002-6508-8942 Regeneron Genetics Center, LLC, Tarrytown, NY 10591, USA. Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, USA. Della Gatta Giusy G 0000-0001-5888-6287 Regeneron Genetics Center, LLC, Tarrytown, NY 10591, USA. Shuldiner Alan R AR 0000-0001-9921-4305 Regeneron Genetics Center, LLC, Tarrytown, NY 10591, USA. eng U01 HL137181 HL NHLBI NIH HHS United States U01 HL072515 HL NHLBI NIH HHS United States R01 AG018728 AG NIA NIH HHS United States R01 HL121007 HL NHLBI NIH HHS United States R01 HL117626 HL NHLBI NIH HHS United States R01 HL120393 HL NHLBI NIH HHS United States P30 DK072488 DK NIDDK NIH HHS United States Journal Article Research Support, N.I.H., Extramural 2021 12 02 United States Science 0404511 0036-8075 0 Cholesterol, LDL 0 Glycoproteins 0 Polysaccharides 9001-32-5 Fibrinogen EC 2.4.1.- Galactosyltransferases EC 2.4.1.- beta-1,4-galactosyltransferase I GZP2782OP0 N-Acetylneuraminic Acid X2RN3Q8DNE Galactose IM Animals Cholesterol, LDL blood Coronary Artery Disease genetics prevention & control Female Fibrinogen analysis Galactose metabolism Galactosyltransferases genetics metabolism Gene Knock-In Techniques Gene Knockdown Techniques Glycoproteins blood Glycosylation Humans Liver enzymology Male Mice Mutation, Missense N-Acetylneuraminic Acid metabolism Polysaccharides blood Whole Genome Sequencing 2021 12 2 17 19 2021 12 3 6 0 2021 12 18 6 0 ppublish 34855475 10.1126/science.abe0348 33986266 2021 05 31 2024 01 04 2041-1723 12 1 2021 May 13 Nature communications Nat Commun Tissue-specific activation of gene expression by the Synergistic Activation Mediator (SAM) CRISPRa system in mice. 2770 2770 2770 10.1038/s41467-021-22932-4 CRISPR-based transcriptional activation is a powerful tool for functional gene interrogation; however, delivery difficulties have limited its applications in vivo. Here, we created a mouse model expressing all components of the CRISPR-Cas9 guide RNA-directed Synergistic Activation Mediator (SAM) from a single transcript that is capable of activating target genes in a tissue-specific manner. We optimized Lipid Nanoparticles and Adeno-Associated Virus guide RNA delivery approaches to achieve expression modulation of one or more genes in vivo. We utilized the SAM mouse model to generate a hypercholesteremia disease state that we could bidirectionally modulate with various guide RNAs. Additionally, we applied SAM to optimize gene expression in a humanized Transthyretin mouse model to recapitulate human expression levels. These results demonstrate that the SAM gene activation platform can facilitate in vivo research and drug discovery. Hunt Charleen C 0000-0003-0537-862X Regeneron Pharmaceuticals, Inc., Tarrytown, NY, USA. Hartford Suzanne A SA 0000-0001-8816-8585 Regeneron Pharmaceuticals, Inc., Tarrytown, NY, USA. White Derek D Regeneron Pharmaceuticals, Inc., Tarrytown, NY, USA. Pefanis Evangelos E Regeneron Pharmaceuticals, Inc., Tarrytown, NY, USA. Hanna Timothy T Regeneron Pharmaceuticals, Inc., Tarrytown, NY, USA. Herman Clarissa C Regeneron Pharmaceuticals, Inc., Tarrytown, NY, USA. Wiley Jarrell J Regeneron Pharmaceuticals, Inc., Tarrytown, NY, USA. Brown Heather H Regeneron Pharmaceuticals, Inc., Tarrytown, NY, USA. Su Qi Q Regeneron Pharmaceuticals, Inc., Tarrytown, NY, USA. Xin Yurong Y Regeneron Pharmaceuticals, Inc., Tarrytown, NY, USA. Voronin Dennis D Regeneron Pharmaceuticals, Inc., Tarrytown, NY, USA. Nguyen Hien H Regeneron Pharmaceuticals, Inc., Tarrytown, NY, USA. Altarejos Judith J Regeneron Pharmaceuticals, Inc., Tarrytown, NY, USA. Crosby Keith K Regeneron Pharmaceuticals, Inc., Tarrytown, NY, USA. Haines Jeffery J Regeneron Pharmaceuticals, Inc., Tarrytown, NY, USA. Cancelarich Sarah S Regeneron Pharmaceuticals, Inc., Tarrytown, NY, USA. Drummond Meghan M Regeneron Pharmaceuticals, Inc., Tarrytown, NY, USA. Moller-Tank Sven S Regeneron Pharmaceuticals, Inc., Tarrytown, NY, USA. Malpass Ryan R Regeneron Pharmaceuticals, Inc., Tarrytown, NY, USA. Buckley Jacqueline J Regeneron Pharmaceuticals, Inc., Tarrytown, NY, USA. Del Pilar Molina-Portela Maria M Regeneron Pharmaceuticals, Inc., Tarrytown, NY, USA. Droguett Gustavo G Regeneron Pharmaceuticals, Inc., Tarrytown, NY, USA. Frendewey David D Regeneron Pharmaceuticals, Inc., Tarrytown, NY, USA. Chiao Eric E Regeneron Pharmaceuticals, Inc., Tarrytown, NY, USA. Zambrowicz Brian B 0000-0001-8831-0406 Regeneron Pharmaceuticals, Inc., Tarrytown, NY, USA. Gong Guochun G 0000-0003-4982-0491 Regeneron Pharmaceuticals, Inc., Tarrytown, NY, USA. guochun.gong@regeneron.com. eng Journal Article 2021 05 13 England Nat Commun 101528555 2041-1723 0 Lipid Nanoparticles 0 Liposomes 0 Prealbumin 0 RNA, Guide, CRISPR-Cas Systems IM Animals CRISPR-Cas Systems genetics Cell Line Gene Expression genetics Gene Expression Regulation genetics Genetic Engineering methods HEK293 Cells Humans Hypercholesterolemia genetics pathology Liposomes pharmacology Mice Mice, Inbred C57BL Mice, Transgenic Nanoparticles Prealbumin genetics metabolism RNA, Guide, CRISPR-Cas Systems genetics metabolism Transcriptional Activation genetics C. Hunt, S.H., D.W., E.P., T.H., C. Herman, J. W., H.B., Q.S., D.V., J.A., K.C., J.H., S.C., M.D., S.M.-T., M.P.M.-P., G.D., D.F., E.C., B.Z., and G.G. are employees of Regeneron Pharmaceuticals Inc (“Regeneron”). Regeneron has filed patent applications around the described work. The remaining authors declare no competing interests. 2020 1 17 2021 4 6 2021 5 14 6 13 2021 5 15 6 0 2021 6 1 6 0 2021 5 13 epublish 33986266 PMC8119962 10.1038/s41467-021-22932-4 10.1038/s41467-021-22932-4 Prelich G. Gene overexpression: uses, mechanisms, and interpretation. Genetics. 2012;190:841–854. doi: 10.1534/genetics.111.136911. 10.1534/genetics.111.136911 PMC3296252 22419077 Olalla Saad, S. T. et al. Comparison of different methods to overexpress large genes. J. Biol. Res.91, 10.4081/jbr.2018.7249 (2018). Guo Y, Zhang Y, Hu K. Sleeping Beauty transposon integrates into non-TA dinucleotides. Mob. DNA. 2018;9:8. doi: 10.1186/s13100-018-0113-8. 10.1186/s13100-018-0113-8 PMC5801840 29445422 Liu C. Strategies for designing transgenic DNA constructs. Methods Mol. Biol. 2013;1027:183–201. doi: 10.1007/978-1-60327-369-5_8. 10.1007/978-1-60327-369-5_8 PMC3815551 23912987 Groth AC, Olivares EC, Thyagarajan B, Calos MP. A phage integrase directs efficient site-specific integration in human cells. Proc. Natl Acad. Sci. USA. 2000;97:5995–6000. doi: 10.1073/pnas.090527097. 10.1073/pnas.090527097 PMC18547 10801973 Kolot M, Silberstein N, Yagil E. Site-specific recombination in mammalian cells expressing the Int recombinase of bacteriophage HK022–site-specific recombination in mammalian cells promoted by a phage integrase. Mol. Biol. Rep. 1999;26:207–213. doi: 10.1023/A:1007096701720. 10.1023/A:1007096701720 10532317 Tasic B, et al. Site-specific integrase-mediated transgenesis in mice via pronuclear injection. Proc. Natl Acad. Sci. USA. 2011;108:7902–7907. doi: 10.1073/pnas.1019507108. 10.1073/pnas.1019507108 PMC3093482 21464299 Kim MJ, Ahituv N. The hydrodynamic tail vein assay as a tool for the study of liver promoters and enhancers. Methods Mol. Biol. 2013;1015:279–289. doi: 10.1007/978-1-62703-435-7_18. 10.1007/978-1-62703-435-7_18 PMC4096022 23824863 Tschaharganeh DF, Lowe SW, Garippa RJ, Livshits G. Using CRISPR/Cas to study gene function and model disease in vivo. FEBS J. 2016;283:3194–3203. doi: 10.1111/febs.13750. 10.1111/febs.13750 PMC5120361 27149548 Klug A. The discovery of zinc fingers and their development for practical applications in gene regulation and genome manipulation. Q. Rev. Biophys. 2010;43:1–21. doi: 10.1017/S0033583510000089. 10.1017/S0033583510000089 20478078 Konermann S, et al. Genome-scale transcriptional activation by an engineered CRISPR-Cas9 complex. Nature. 2015;517:583–588. doi: 10.1038/nature14136. 10.1038/nature14136 PMC4420636 25494202 Dominguez AA, Lim WA, Qi LS. Beyond editing: repurposing CRISPR-Cas9 for precision genome regulation and interrogation. Nat. Rev. Mol. Cell Biol. 2016;17:5–15. doi: 10.1038/nrm.2015.2. 10.1038/nrm.2015.2 PMC4922510 26670017 Matharu, N. et al. CRISPR-mediated activation of a promoter or enhancer rescues obesity caused by haploinsufficiency. Science363, 10.1126/science.aau0629 (2019). PMC6570489 30545847 Lundh M, Plucinska K, Isidor MS, Petersen PSS, Emanuelli B. Bidirectional manipulation of gene expression in adipocytes using CRISPRa and siRNA. Mol. Metab. 2017;6:1313–1320. doi: 10.1016/j.molmet.2017.07.001. 10.1016/j.molmet.2017.07.001 PMC5641601 29031730 Dahlman JE, et al. Orthogonal gene knockout and activation with a catalytically active Cas9 nuclease. Nat. Biotechnol. 2015;33:1159–1161. doi: 10.1038/nbt.3390. 10.1038/nbt.3390 PMC4747789 26436575 Liao HK, et al. In vivo target gene activation via CRISPR/Cas9-mediated trans-epigenetic modulation. Cell. 2017;171:1495–1507. doi: 10.1016/j.cell.2017.10.025. 10.1016/j.cell.2017.10.025 PMC5732045 29224783 Ran FA, et al. In vivo genome editing using Staphylococcus aureus Cas9. Nature. 2015;520:186–191. doi: 10.1038/nature14299. 10.1038/nature14299 PMC4393360 25830891 Vora, S. et al. Rational design of a compact CRISPR-Cas9 activator for AAV- mediated delivery. Preprint at bioRxiv10.1101/298620 (2018). Lau CH, Ho JW, Lo PK, Tin C. Targeted transgene activation in the brain tissue by systemic delivery of engineered AAV1 expressing CRISPRa. Mol. Ther. Nucleic Acids. 2019;16:637–649. doi: 10.1016/j.omtn.2019.04.015. 10.1016/j.omtn.2019.04.015 PMC6526230 31108320 Wangensteen KJ, et al. Combinatorial genetics in liver repopulation and carcinogenesis with a in vivo CRISPR activation platform. Hepatology. 2018;68:663–676. doi: 10.1002/hep.29626. 10.1002/hep.29626 PMC5930141 29091290 Chavez A, et al. Comparison of Cas9 activators in multiple species. Nat. Methods. 2016;13:563–567. doi: 10.1038/nmeth.3871. 10.1038/nmeth.3871 PMC4927356 27214048 Zambrowicz BP, et al. Disruption of overlapping transcripts in the ROSA beta geo 26 gene trap strain leads to widespread expression of beta-galactosidase in mouse embryos and hematopoietic cells. Proc. Natl Acad. Sci. USA. 1997;94:3789–3794. doi: 10.1073/pnas.94.8.3789. 10.1073/pnas.94.8.3789 PMC20519 9108056 Friedrich G, Soriano P. Promoter traps in embryonic stem cells: a genetic screen to identify and mutate developmental genes in mice. Genes Dev. 1991;5:1513–1523. doi: 10.1101/gad.5.9.1513. 10.1101/gad.5.9.1513 1653172 Valenzuela DM, et al. High-throughput engineering of the mouse genome coupled with high-resolution expression analysis. Nat. Biotechnol. 2003;21:652–659. doi: 10.1038/nbt822. 10.1038/nbt822 12730667 Vihervaara A, Sistonen L. HSF1 at a glance. J. Cell Sci. 2014;127:261–266. doi: 10.1242/jcs.132605. 10.1242/jcs.132605 24421309 Graslund T, Li X, Magnenat L, Popkov M, Barbas CF., 3rd Exploring strategies for the design of artificial transcription factors: targeting sites proximal to known regulatory regions for the induction of gamma-globin expression and the treatment of sickle cell disease. J. Biol. Chem. 2005;280:3707–3714. doi: 10.1074/jbc.M406809200. 10.1074/jbc.M406809200 15537646 Tutucci E, et al. An improved MS2 system for accurate reporting of the mRNA life cycle. Nat. Methods. 2018;15:81–89. doi: 10.1038/nmeth.4502. 10.1038/nmeth.4502 PMC5843578 29131164 Wu C, et al. BioGPS: an extensible and customizable portal for querying and organizing gene annotation resources. Genome Biol. 2009;10:R130. doi: 10.1186/gb-2009-10-11-r130. 10.1186/gb-2009-10-11-r130 PMC3091323 19919682 Lai KM, et al. Diverse phenotypes and specific transcription patterns in twenty mouse lines with ablated LincRNAs. PLoS ONE. 2015;10:e0125522. doi: 10.1371/journal.pone.0125522. 10.1371/journal.pone.0125522 PMC4409293 25909911 Su AI, et al. A gene atlas of the mouse and human protein-encoding transcriptomes. Proc. Natl Acad. Sci. USA. 2004;101:6062–6067. doi: 10.1073/pnas.0400782101. 10.1073/pnas.0400782101 PMC395923 15075390 Jensen, M. K. Design principles for nuclease-deficient CRISPR-based transcriptional regulators. FEMS Yeast Res. 18, 10.1093/femsyr/foy039 (2018). PMC5932555 29726937 McGinn J, Marraffini LA. Molecular mechanisms of CRISPR-Cas spacer acquisition. Nat. Rev. Microbiol. 2019;17:7–12. doi: 10.1038/s41579-018-0071-7. 10.1038/s41579-018-0071-7 30171202 Kent WJ, et al. The human genome browser at UCSC. Genome Res. 2002;12:996–1006. doi: 10.1101/gr.229102. 10.1101/gr.229102 PMC186604 12045153 Consortium EP. An integrated encyclopedia of DNA elements in the human genome. Nature. 2012;489:57–74. doi: 10.1038/nature11247. 10.1038/nature11247 PMC3439153 22955616 Davis CA, et al. The Encyclopedia of DNA elements (ENCODE): data portal update. Nucleic Acids Res. 2018;46:D794–D801. doi: 10.1093/nar/gkx1081. 10.1093/nar/gkx1081 PMC5753278 29126249 Zhou H, et al. In vivo simultaneous transcriptional activation of multiple genes in the brain using CRISPR-dCas9-activator transgenic mice. Nat. Neurosci. 2018;21:440–446. doi: 10.1038/s41593-017-0060-6. 10.1038/s41593-017-0060-6 29335603 Kent WJ. BLAT-the BLAST-like alignment tool. Genome Res. 2002;12:656–664. doi: 10.1101/gr.229202. 10.1101/gr.229202 PMC187518 11932250 Gossler A, Joyner AL, Rossant J, Skarnes WC. Mouse embryonic stem cells and reporter constructs to detect developmentally regulated genes. Science. 1989;244:463–465. doi: 10.1126/science.2497519. 10.1126/science.2497519 2497519 Lau CH, Suh Y. In vivo genome editing in animals using AAV-CRISPR system: applications to translational research of human disease. F1000Res. 2017;6:2153. doi: 10.12688/f1000research.11243.1. 10.12688/f1000research.11243.1 PMC5749125 29333255 Yin H, Kauffman KJ, Anderson DG. Delivery technologies for genome editing. Nat. Rev. Drug Discov. 2017;16:387–399. doi: 10.1038/nrd.2016.280. 10.1038/nrd.2016.280 28337020 Senis E, et al. CRISPR/Cas9-mediated genome engineering: an adeno-associated viral (AAV) vector toolbox. Biotechnol. J. 2014;9:1402–1412. doi: 10.1002/biot.201400046. 10.1002/biot.201400046 25186301 Magami Y, et al. Cell proliferation and renewal of normal hepatocytes and bile duct cells in adult mouse. Liver. 2002;22:419–425. doi: 10.1034/j.1600-0676.2002.01702.x. 10.1034/j.1600-0676.2002.01702.x 12390477 Malato Y, et al. Fate tracing of mature hepatocytes in mouse liver homeostasis and regeneration. J. Clin. Invest. 2011;121:4850–4860. doi: 10.1172/JCI59261. 10.1172/JCI59261 PMC3226005 22105172 Furuyama K, et al. Continuous cell supply from a Sox9-expressing progenitor zone in adult liver, exocrine pancreas and intestine. Nat. Genet. 2011;43:34–41. doi: 10.1038/ng.722. 10.1038/ng.722 21113154 Lattin JE, et al. Expression analysis of G Protein-Coupled Receptors in mouse macrophages. Immunome Res. 2008;4:5. doi: 10.1186/1745-7580-4-5. 10.1186/1745-7580-4-5 PMC2394514 18442421 Hordeaux J, et al. The GPI-linked protein LY6A drives AAV-PHP.B transport across the blood-brain barrier. Mol. Ther. 2019;27:912–921. doi: 10.1016/j.ymthe.2019.02.013. 10.1016/j.ymthe.2019.02.013 PMC6520463 30819613 Chan KY, et al. Engineered AAVs for efficient noninvasive gene delivery to the central and peripheral nervous systems. Nat. Neurosci. 2017;20:1172–1179. doi: 10.1038/nn.4593. 10.1038/nn.4593 PMC5529245 28671695 Wise PM, Scarbrough K, Weiland NG, Larson GH. Diurnal pattern of proopiomelanocortin gene expression in the arcuate nucleus of proestrous, ovariectomized, and steroid-treated rats: a possible role in cyclic luteinizing hormone secretion. Mol. Endocrinol. 1990;4:886–892. doi: 10.1210/mend-4-6-886. 10.1210/mend-4-6-886 2233745 Goutman JD, Elgoyhen AB, Gomez-Casati ME. Cochlear hair cells: the sound-sensing machines. FEBS Lett. 2015;589:3354–3361. doi: 10.1016/j.febslet.2015.08.030. 10.1016/j.febslet.2015.08.030 PMC4641020 26335749 Ogier JM, Burt RA, Drury HR, Lim R, Nayagam BA. Organotypic culture of neonatal murine inner ear explants. Front. Cell Neurosci. 2019;13:170. doi: 10.3389/fncel.2019.00170. 10.3389/fncel.2019.00170 PMC6509234 31130846 Bas E, Gupta C, Van De Water TR. A novel organ of corti explant model for the study of cochlear implantation trauma. Anat. Rec. (Hoboken) 2012;295:1944–1956. doi: 10.1002/ar.22585. 10.1002/ar.22585 23044812 Shapiro MD, Tavori H, Fazio S. PCSK9: from basic science discoveries to clinical trials. Circ. Res. 2018;122:1420–1438. doi: 10.1161/CIRCRESAHA.118.311227. 10.1161/CIRCRESAHA.118.311227 PMC5976255 29748367 Melendez QM, Krishnaji ST, Wooten CJ, Lopez D. Hypercholesterolemia: the role of PCSK9. Arch. Biochem. Biophys. 2017;625-626:39–53. doi: 10.1016/j.abb.2017.06.001. 10.1016/j.abb.2017.06.001 28587771 Hopkins PN, et al. Characterization of autosomal dominant hypercholesterolemia caused by PCSK9 gain of function mutations and its specific treatment with alirocumab, a PCSK9 monoclonal antibody. Circ. Cardiovasc. Genet. 2015;8:823–831. doi: 10.1161/CIRCGENETICS.115.001129. 10.1161/CIRCGENETICS.115.001129 PMC5098466 26374825 Gertz MA, et al. Diagnosis, prognosis, and therapy of transthyretin amyloidosis. J. Am. Coll. Cardiol. 2015;66:2451–2466. doi: 10.1016/j.jacc.2015.09.075. 10.1016/j.jacc.2015.09.075 26610878 Ueda M, Ando Y. Recent advances in transthyretin amyloidosis therapy. Transl. Neurodegener. 2014;3:19. doi: 10.1186/2047-9158-3-19. 10.1186/2047-9158-3-19 PMC4165622 25228988 Fu L, Zhu X, Yi F, Liu GH, Izpisua Belmonte JC. Regenerative medicine: transdifferentiation in vivo. Cell Res. 2014;24:141–142. doi: 10.1038/cr.2013.165. 10.1038/cr.2013.165 PMC3915906 24343579 Li YY, et al. Systematic analysis of head-to-head gene organization: evolutionary conservation and potential biological relevance. PLoS Comput. Biol. 2006;2:e74. doi: 10.1371/journal.pcbi.0020074. 10.1371/journal.pcbi.0020074 PMC1487180 16839196 Kim HK, Pham MHC, Ko KS, Rhee BD, Han J. Alternative splicing isoforms in health and disease. Pflug. Arch. 2018;470:995–1016. doi: 10.1007/s00424-018-2136-x. 10.1007/s00424-018-2136-x 29536164 Poueymirou WT, et al. F0 generation mice fully derived from gene-targeted embryonic stem cells allowing immediate phenotypic analyses. Nat. Biotechnol. 2007;25:91–99. doi: 10.1038/nbt1263. 10.1038/nbt1263 17187059 Haeussler M, et al. Evaluation of off-target and on-target scoring algorithms and integration into the guide RNA selection tool CRISPOR. Genome Biol. 2016;17:148. doi: 10.1186/s13059-016-1012-2. 10.1186/s13059-016-1012-2 PMC4934014 27380939 Arden, E. & Metzger, J. M. Inexpensive, serotype-independent protocol for native and bioengineered recombinant adeno-associated virus purification. J. Biol. Methods3, 10.14440/jbm.2016.102 (2016). PMC4902285 27294171 Zolotukhin S, et al. Recombinant adeno-associated virus purification using novel methods improves infectious titer and yield. Gene Ther. 1999;6:973–985. doi: 10.1038/sj.gt.3300938. 10.1038/sj.gt.3300938 10455399 Liu F, Song Y, Liu D. Hydrodynamics-based transfection in animals by systemic administration of plasmid DNA. Gene Ther. 1999;6:1258–1266. doi: 10.1038/sj.gt.3300947. 10.1038/sj.gt.3300947 10455434 Altarejos JY, et al. The Creb1 coactivator Crtc1 is required for energy balance and fertility. Nat. Med. 2008;14:1112–1117. doi: 10.1038/nm.1866. 10.1038/nm.1866 PMC2667698 18758446 30289441 2020 05 26 2020 08 25 1529-7268 100 3 2019 Mar 01 Biology of reproduction Biol Reprod Deletion of Adam6 in Mus musculus leads to male subfertility and deficits in sperm ascent into the oviduct. 686 696 686-696 10.1093/biolre/ioy210 The Adisintegrin and metalloprotease domain-containing (ADAM) family of proteins is involved in cell adhesion, migration, proteolysis, and signaling. Many ADAMs are required for reproduction; however, the role of Adam6 has remained largely unknown. In the course of humanizing the mouse immunoglobulin heavy chain (IgH) locus, we generated Adam6-deficient mice that demonstrate severe subfertility. We decided to elucidate the role of ADAM6 in fertility and explore the underlying mechanisms. Despite normal sperm development and motility, Adam6-deficient mice display diminished male fertility, have abnormal sperm adhesion, and most importantly cannot transition from uterus to oviduct. To test whether ADAM6 is required for sperm's binding to extracellular matrix (ECM) components, we used a panel of ECM components and showed that unlike normal sperm, Adam6-deficient sperm cannot bind fibronectin, laminin, and tenascin. Reintroduction of Adam6 into these deficient mice repaired sperm interaction with ECM, restored male fertility, and corrected the sperm transport deficit. Together, our data suggest that ADAM6, either alone or in complex with other proteins, aids sperm transport through the female reproductive tract by providing a temporary site of attachment of sperm to ECM components prior to ascent into the oviduct. © The Author(s) 2018. Published by Oxford University Press on behalf of Society for the Study of Reproduction. Voronina Vera A VA Regeneron Pharmaceuticals, Inc., Tarrytown, New York, USA. Harris Faith M FM Regeneron Pharmaceuticals, Inc., Tarrytown, New York, USA. Schmahl Jennifer J Regeneron Pharmaceuticals, Inc., Tarrytown, New York, USA. Galligan Caryn C Regeneron Pharmaceuticals, Inc., Tarrytown, New York, USA. Oristian Daniel D Regeneron Pharmaceuticals, Inc., Tarrytown, New York, USA. Zamfirova Ralica R Regeneron Pharmaceuticals, Inc., Tarrytown, New York, USA. Gong Guochun G Regeneron Pharmaceuticals, Inc., Tarrytown, New York, USA. Bai Yu Y Regeneron Pharmaceuticals, Inc., Tarrytown, New York, USA. Fury Wen W Regeneron Pharmaceuticals, Inc., Tarrytown, New York, USA. Rajamani Saathyaki S Regeneron Pharmaceuticals, Inc., Tarrytown, New York, USA. Walls Johnathon R JR Regeneron Pharmaceuticals, Inc., Tarrytown, New York, USA. Poueymirou William T WT Regeneron Pharmaceuticals, Inc., Tarrytown, New York, USA. Esau Lakeisha L Regeneron Pharmaceuticals, Inc., Tarrytown, New York, USA. Gale Nicholas W NW Regeneron Pharmaceuticals, Inc., Tarrytown, New York, USA. Auerbach Wojtek W Regeneron Pharmaceuticals, Inc., Tarrytown, New York, USA. Murphy Andrew J AJ Regeneron Pharmaceuticals, Inc., Tarrytown, New York, USA. Macdonald Lynn E LE Regeneron Pharmaceuticals, Inc., Tarrytown, New York, USA. eng Journal Article United States Biol Reprod 0207224 0006-3363 0 Adam6a protein, mouse EC 3.4.24.- ADAM Proteins IM ADAM Proteins genetics metabolism Animals Female Infertility, Male genetics Male Mice Mice, Knockout Oviducts Sperm Motility genetics physiology Spermatozoa physiology extracellular matrix female reproductive tract male subfertility oviduct sperm motility and transport 2018 3 30 2018 8 8 2018 10 3 2018 10 6 6 0 2020 5 27 6 0 2018 10 6 6 0 ppublish 30289441 10.1093/biolre/ioy210 5115557 26979938 2017 01 06 2019 12 10 2045-2322 6 2016 Mar 16 Scientific reports Sci Rep C9orf72 ablation causes immune dysregulation characterized by leukocyte expansion, autoantibody production, and glomerulonephropathy in mice. 23204 23204 23204 10.1038/srep23204 The expansion of a hexanucleotide (GGGGCC) repeat in C9ORF72 is the most common cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Both the function of C9ORF72 and the mechanism by which the repeat expansion drives neuropathology are unknown. To examine whether C9ORF72 haploinsufficiency induces neurological disease, we created a C9orf72-deficient mouse line. Null mice developed a robust immune phenotype characterized by myeloid expansion, T cell activation, and increased plasma cells. Mice also presented with elevated autoantibodies and evidence of immune-mediated glomerulonephropathy. Collectively, our data suggest that C9orf72 regulates immune homeostasis and an autoimmune response reminiscent of systemic lupus erythematosus (SLE) occurs in its absence. We further imply that haploinsufficiency is unlikely to be the causative factor in C9ALS/FTD pathology. Atanasio Amanda A Regeneron Pharmaceuticals, Inc, Tarrytown, NY USA. Decman Vilma V Regeneron Pharmaceuticals, Inc, Tarrytown, NY USA. White Derek D Regeneron Pharmaceuticals, Inc, Tarrytown, NY USA. Ramos Meg M Regeneron Pharmaceuticals, Inc, Tarrytown, NY USA. Ikiz Burcin B Regeneron Pharmaceuticals, Inc, Tarrytown, NY USA. Lee Hoi-Ching HC Regeneron Pharmaceuticals, Inc, Tarrytown, NY USA. Siao Chia-Jen CJ Regeneron Pharmaceuticals, Inc, Tarrytown, NY USA. Brydges Susannah S Regeneron Pharmaceuticals, Inc, Tarrytown, NY USA. LaRosa Elizabeth E Regeneron Pharmaceuticals, Inc, Tarrytown, NY USA. Bai Yu Y Regeneron Pharmaceuticals, Inc, Tarrytown, NY USA. Fury Wen W Regeneron Pharmaceuticals, Inc, Tarrytown, NY USA. Burfeind Patricia P Regeneron Pharmaceuticals, Inc, Tarrytown, NY USA. Zamfirova Ralica R Regeneron Pharmaceuticals, Inc, Tarrytown, NY USA. Warshaw Gregg G Regeneron Pharmaceuticals, Inc, Tarrytown, NY USA. Orengo Jamie J Regeneron Pharmaceuticals, Inc, Tarrytown, NY USA. Oyejide Adelekan A Regeneron Pharmaceuticals, Inc, Tarrytown, NY USA. Fralish Michael M Regeneron Pharmaceuticals, Inc, Tarrytown, NY USA. Auerbach Wojtek W Regeneron Pharmaceuticals, Inc, Tarrytown, NY USA. Poueymirou William W Regeneron Pharmaceuticals, Inc, Tarrytown, NY USA. Freudenberg Jan J Regeneron Pharmaceuticals, Inc, Tarrytown, NY USA. Gong Guochun G Regeneron Pharmaceuticals, Inc, Tarrytown, NY USA. Zambrowicz Brian B Regeneron Pharmaceuticals, Inc, Tarrytown, NY USA. Valenzuela David D Regeneron Pharmaceuticals, Inc, Tarrytown, NY USA. Yancopoulos George G Regeneron Pharmaceuticals, Inc, Tarrytown, NY USA. Murphy Andrew A Regeneron Pharmaceuticals, Inc, Tarrytown, NY USA. Thurston Gavin G Regeneron Pharmaceuticals, Inc, Tarrytown, NY USA. Lai Ka-Man Venus KM Regeneron Pharmaceuticals, Inc, Tarrytown, NY USA. eng Journal Article 2016 03 16 England Sci Rep 101563288 2045-2322 0 Autoantibodies 0 C9orf72 Protein 0 C9orf72 protein, mouse 0 Cytokines 0 Guanine Nucleotide Exchange Factors IM Acta Neuropathol. 2016 Jul;132(1):145-7. doi: 10.1007/s00401-016-1581-x 27206760 Animals Autoantibodies biosynthesis blood Autoimmunity C9orf72 Protein Cytokines blood Female Glomerulonephritis, Membranoproliferative blood genetics immunology Guanine Nucleotide Exchange Factors genetics metabolism Lupus Erythematosus, Systemic genetics immunology Lymphocyte Activation Lymphoid Tissue pathology Macrophages immunology Male Mice, 129 Strain Mice, Inbred C57BL Mice, Knockout Plasma Cells immunology Sequence Analysis, RNA Transcriptome 2015 11 17 2016 3 2 2016 3 17 6 0 2016 3 17 6 0 2017 1 7 6 0 2016 3 16 epublish 26979938 PMC4793236 10.1038/srep23204 srep23204 DeJesus-Hernandez M. et al. Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p-linked FTD and ALS. Neuron 72, 245–256 (2011). PMC3202986 21944778 Renton A. E. et al. A hexanucleotide repeat expansion in C9ORF72 is the cause of chromosome 9p21-linked ALS-FTD. Neuron 72, 257–268 (2011). PMC3200438 21944779 van Swieten J. C. & Grossman M. FTD/ALS families are no longer orphaned: the C9ORF72 story. Neurology 79, 962–964 (2012). 22875094 Donnelly C. J., Grima J. C. & Sattler R. Aberrant RNA homeostasis in amyotrophic lateral sclerosis: potential for new therapeutic targets? Neurodegener. Dis. Manag. 4, 417–437 (2014). PMC4308292 25531686 Haeusler A. R. et al. C9orf72 nucleotide repeat structures initiate molecular cascades of disease. Nature 507, 195–200 (2014). PMC4046618 24598541 Lee Y. B. et al. Hexanucleotide repeats in ALS/FTD form length-dependent RNA foci, sequester RNA binding proteins, and are neurotoxic. Cell Rep 5, 1178–1186 (2013). PMC3898469 24290757 Mori K. et al. hnRNP A3 binds to GGGGCC repeats and is a constituent of p62-positive/TDP43-negative inclusions in the hippocampus of patients with C9orf72 mutations. Acta Neuropathol 125, 413–423 (2013). 23381195 Porta S., Kwong L. K., Trojanowski J. Q. & Lee V. M. Drosha inclusions are new components of dipeptide-repeat protein aggregates in FTLD-TDP and ALS C9orf72 expansion cases. J Neuropathol Exp Neurol 74, 380–387 (2015). PMC4362478 25756586 Sareen D. et al. Targeting RNA foci in iPSC-derived motor neurons from ALS patients with a C9ORF72 repeat expansion. Sci Transl Med 5, 208ra149 (2013). PMC4090945 24154603 Xu Z. et al. Expanded GGGGCC repeat RNA associated with amyotrophic lateral sclerosis and frontotemporal dementia causes neurodegeneration. Proc Natl Acad Sci USA 110, 7778–7783 (2013). PMC3651485 23553836 Ash P. E. et al. Unconventional translation of C9ORF72 GGGGCC expansion generates insoluble polypeptides specific to c9FTD/ALS. Neuron 77, 639–646 (2013). PMC3593233 23415312 Mori K. et al. Bidirectional transcripts of the expanded C9orf72 hexanucleotide repeat are translated into aggregating dipeptide repeat proteins. Acta Neuropathol 126, 881–893 (2013). 24132570 Mori K. et al. The C9orf72 GGGGCC repeat is translated into aggregating dipeptide-repeat proteins in FTLD/ALS. Science 339, 1335–1338 (2013). 23393093 Zu T. et al. RAN proteins and RNA foci from antisense transcripts in C9ORF72 ALS and frontotemporal dementia. Proc Natl Acad Sci USA 110, E4968–4977 (2013). PMC3870665 24248382 Stancu I. C., Vasconcelos B., Terwel D. & Dewachter I. Models of beta-amyloid induced Tau-pathology: the long and “folded” road to understand the mechanism. Mol Neurodegener 9, 51 (2014). PMC4255655 25407337 Gijselinck I. et al. A C9orf72 promoter repeat expansion in a Flanders-Belgian cohort with disorders of the frontotemporal lobar degeneration-amyotrophic lateral sclerosis spectrum: a gene identification study. Lancet Neurol 11, 54–65 (2012). 22154785 Waite A. J. et al. Reduced C9orf72 protein levels in frontal cortex of amyotrophic lateral sclerosis and frontotemporal degeneration brain with the C9ORF72 hexanucleotide repeat expansion. Neurobiol Aging 35, 1779 e1775-1779 e1713 (2014). PMC3988882 24559645 Fratta P. et al. C9orf72 hexanucleotide repeat associated with amyotrophic lateral sclerosis and frontotemporal dementia forms RNA G-quadruplexes. Sci Rep 2, 1016 (2012). PMC3527825 23264878 Reddy K., Zamiri B., Stanley S. Y., Macgregor R. B. Jr. & Pearson C. E. The disease-associated r(GGGGCC)n repeat from the C9orf72 gene forms tract length-dependent uni- and multimolecular RNA G-quadruplex structures. J Biol Chem 288, 9860–9866 (2013). PMC3617286 23423380 Sket P. et al. Characterization of DNA G-quadruplex species forming from C9ORF72 G4C2-expanded repeats associated with amyotrophic lateral sclerosis and frontotemporal lobar degeneration. Neurobiol Aging 36, 1091–1096 (2015). 25442110 Ciura S. et al. Loss of function of C9orf72 causes motor deficits in a zebrafish model of amyotrophic lateral sclerosis. Ann Neurol 74, 180–187 (2013). 23720273 Therrien M., Rouleau G. A., Dion P. A. & Parker J. A. Deletion of C9ORF72 results in motor neuron degeneration and stress sensitivity in C. elegans. PLoS One 8, e83450 (2013). PMC3861484 24349511 Koppers M. et al. C9orf72 ablation in mice does not cause motor neuron degeneration or motor deficits. Ann Neurol 78, 426–438 (2015). PMC4744979 26044557 Lagier-Tourenne C. et al. Targeted degradation of sense and antisense C9orf72 RNA foci as therapy for ALS and frontotemporal degeneration. Proc Natl Acad Sci USA 110, E4530–4539 (2013). PMC3839752 24170860 Suzuki N. et al. The mouse C9ORF72 ortholog is enriched in neurons known to degenerate in ALS and FTD. Nat Neurosci 16, 1725–1727 (2013). PMC4397902 24185425 Gill A., Kidd J., Vieira F., Thompson K. & Perrin S. No benefit from chronic lithium dosing in a sibling-matched, gender balanced, investigator-blinded trial using a standard mouse model of familial ALS. PLoS One 4, e6489 (2009). PMC2714460 19649300 Heng T. S., Painter M. W. & Immunological Genome Project, C. The Immunological Genome Project: networks of gene expression in immune cells. Nat Immunol 9, 1091–1094 (2008). 18800157 Vignali D. A. & Kuchroo V. K. IL-12 family cytokines: immunological playmakers. Nat Immunol 13, 722–728 (2012). PMC4158817 22814351 Kilciksiz S., Karakoyun-Celik O., Agaoglu F. Y. & Haydaroglu A. A review for solitary plasmacytoma of bone and extramedullary plasmacytoma. Scientific World Journal 2012, 895765 (2012). PMC3354668 22654647 Palumbo A. & Anderson K. Multiple myeloma. N Engl J Med 364, 1046–1060 (2011). 21410373 Tarlinton D. M. & Hodgkin P. D. Targeting plasma cells in autoimmune diseases. J Exp Med 199, 1451–1454 (2004). PMC2211780 15173204 Browning J. L. B cells move to centre stage: novel opportunities for autoimmune disease treatment. Nat Rev Drug Discov 5, 564–576 (2006). 16816838 Ingegnoli F., Castelli R. & Gualtierotti R. Rheumatoid factors: clinical applications. Dis Markers 35, 727–734 (2013). PMC3845430 24324289 Kurts C., Panzer U., Anders H. J. & Rees A. J. The immune system and kidney disease: basic concepts and clinical implications. Nat Rev Immunol 13, 738–753 (2013). 24037418 Apostolidis S. A., Lieberman L. A., Kis-Toth K., Crispin J. C. & Tsokos G. C. The dysregulation of cytokine networks in systemic lupus erythematosus. J Interferon Cytokine Res 31, 769–779 (2011). PMC3189553 21877904 Perry D., Sang A., Yin Y., Zheng Y. Y. & Morel L. Murine models of systemic lupus erythematosus. J Biomed Biotechnol 2011, 271694 (2011). PMC3042628 21403825 Sherer Y., Gorstein A., Fritzler M. J. & Shoenfeld Y. Autoantibody explosion in systemic lupus erythematosus: more than 100 different antibodies found in SLE patients. Semin Arthritis Rheum 34, 501–537 (2004). 15505768 Xu H. et al. Increased frequency of circulating follicular helper T cells in lupus patients is associated with autoantibody production in a CD40L-dependent manner. Cell Immunol 295, 46–51 (2015). 25748125 Migliorini P., Baldini C., Rocchi V. & Bombardieri S. Anti-Sm and anti-RNP antibodies. Autoimmunity 38, 47–54 (2005). 15804705 Kivity S., Agmon-Levin N., Zandman-Goddard G., Chapman J. & Shoenfeld Y. Neuropsychiatric lupus: a mosaic of clinical presentations. BMC Med 13, 43 (2015). PMC4349748 25858312 Gulinello M. & Putterman C. The MRL/lpr mouse strain as a model for neuropsychiatric systemic lupus erythematosus. J Biomed Biotechnol 2011, 207504 (2011). PMC3038428 21331367 Zandman-Goddard G., Chapman J. & Shoenfeld Y. Autoantibodies involved in neuropsychiatric SLE and antiphospholipid syndrome. Semin Arthritis Rheum 36, 297–315 (2007). 17258299 Sciascia S., Bertolaccini M. L., Roccatello D., Khamashta M. A. & Sanna G. Autoantibodies involved in neuropsychiatric manifestations associated with systemic lupus erythematosus: a systematic review. J Neurol 261, 1706–1714 (2014). 24952022 Zivkovic S. Autoimmune neurologic disorders. Curr Neuropharmacol 9, 399 (2011). PMC3151593 22379453 Nataf S. & Pays L. Gene co-expression analysis unravels a link between C9orf72 and RNA metabolism in myeloid cells. Acta Neuropathol Commun 3, 64 (2015). PMC4608290 26472214 Muller M., Emmendorffer A. & Lohmann-Matthes M. L. Expansion and high proliferative potential of the macrophage system throughout life time of lupus-prone NZB/W and MRL lpr/lpr mice. Lack of down-regulation of extramedullar macrophage proliferation in the postnatal period. Eur J Immunol 21, 2211–2217 (1991). 1889463 Herrmann M. et al. Impaired phagocytosis of apoptotic cell material by monocyte-derived macrophages from patients with systemic lupus erythematosus. Arthritis Rheum 41, 1241–1250 (1998). 9663482 Potter P. K., Cortes-Hernandez J., Quartier P., Botto M. & Walport M. J. Lupus-prone mice have an abnormal response to thioglycolate and an impaired clearance of apoptotic cells. J Immunol 170, 3223–3232 (2003). 12626581 Shao W. H. & Cohen P. L. Disturbances of apoptotic cell clearance in systemic lupus erythematosus. Arthritis Res Ther 13, 202 (2011). PMC3157636 21371352 Zhou X. J. et al. Genetic association of PRDM1-ATG5 intergenic region and autophagy with systemic lupus erythematosus in a Chinese population. Ann Rheum Dis 70, 1330–1337 (2011). 21622776 Zhang Y. M. et al. Rare Variants of ATG5 Are Likely to Be Associated With Chinese Patients With Systemic Lupus Erythematosus. Medicine (Baltimore) 94, e939 (2015). PMC4616363 26039132 Fernandez D. R. et al. Activation of mammalian target of rapamycin controls the loss of TCRzeta in lupus T cells through HRES-1/Rab4-regulated lysosomal degradation. J Immunol 182, 2063–2073 (2009). PMC2676112 19201859 Clarke A. J. et al. Autophagy is activated in systemic lupus erythematosus and required for plasmablast development. Ann Rheum Dis 74, 912–920 (2015). PMC4152192 24419333 Pierdominici M. et al. Role of autophagy in immunity and autoimmunity, with a special focus on systemic lupus erythematosus. FASEB J 26, 1400–1412 (2012). 22247332 Towns R. et al. Sera from patients with type 2 diabetes and neuropathy induce autophagy and colocalization with mitochondria in SY5Y cells. Autophagy 1, 163–170 (2005). 16874076 Farg M. A. et al. C9ORF72, implicated in amytrophic lateral sclerosis and frontotemporal dementia, regulates endosomal trafficking. Hum Mol Genet 23, 3579–3595 (2014). PMC4049310 24549040 Xiao S. et al. Isoform-specific antibodies reveal distinct subcellular localizations of C9orf72 in amyotrophic lateral sclerosis. Ann Neurol 78, 568–583 (2015). 26174152 Freibaum B. D. et al. GGGGCC repeat expansion in C9orf72 compromises nucleocytoplasmic transport. Nature 525, 129–133 (2015). PMC4631399 26308899 Jovicic A. et al. Modifiers of C9orf72 dipeptide repeat toxicity connect nucleocytoplasmic transport defects to FTD/ALS. Nat Neurosci 18, 1226–1229 (2015). PMC4552077 26308983 Zhang K. et al. The C9orf72 repeat expansion disrupts nucleocytoplasmic transport. Nature 525, 56–61 (2015). PMC4800742 26308891 Dechiara T. M. et al. VelociMouse: fully ES cell-derived F0-generation mice obtained from the injection of ES cells into eight-cell-stage embryos. Methods Mol Biol 530, 311–324 (2009). 19266341 DeChiara T. M. et al. Producing fully ES cell-derived mice from eight-cell stage embryo injections. Methods Enzymol 476, 285–294 (2010). 20691872 Poueymirou W. T. et al. F0 generation mice fully derived from gene-targeted embryonic stem cells allowing immediate phenotypic analyses. Nat Biotechnol 25, 91–99 (2007). 17187059 Valenzuela D. M. et al. High-throughput engineering of the mouse genome coupled with high-resolution expression analysis. Nat Biotechnol 21, 652–659 (2003). 12730667 Frazier K. S. et al. Proliferative and nonproliferative lesions of the rat and mouse urinary system. Toxicol Pathol 40, 14S–86S (2012). 22637735 25909911 2016 04 11 2018 11 13 1932-6203 10 4 2015 PloS one PLoS One Diverse Phenotypes and Specific Transcription Patterns in Twenty Mouse Lines with Ablated LincRNAs. e0125522 e0125522 e0125522 10.1371/journal.pone.0125522 In a survey of 20 knockout mouse lines designed to examine the biological functions of large intergenic non-coding RNAs (lincRNAs), we have found a variety of phenotypes, ranging from perinatal lethality to defects associated with premature aging and morphological and functional abnormalities in the lungs, skeleton, and muscle. Each mutant allele carried a lacZ reporter whose expression profile highlighted a wide spectrum of spatiotemporal and tissue-specific transcription patterns in embryos and adults that informed our phenotypic analyses and will serve as a guide for future investigations of these genes. Our study shows that lincRNAs are a new class of encoded molecules that, like proteins, serve essential and important functional roles in embryonic development, physiology, and homeostasis of a broad array of tissues and organs in mammals. Lai Ka-Man Venus KM VelociGene, Regeneron Pharmaceuticals, Inc., Tarrytown, New York, United States of America. Gong Guochun G VelociGene, Regeneron Pharmaceuticals, Inc., Tarrytown, New York, United States of America. Atanasio Amanda A VelociGene, Regeneron Pharmaceuticals, Inc., Tarrytown, New York, United States of America. Rojas José J VelociGene, Regeneron Pharmaceuticals, Inc., Tarrytown, New York, United States of America. Quispe Joseph J VelociGene, Regeneron Pharmaceuticals, Inc., Tarrytown, New York, United States of America. Posca Julita J VelociGene, Regeneron Pharmaceuticals, Inc., Tarrytown, New York, United States of America. White Derek D VelociGene, Regeneron Pharmaceuticals, Inc., Tarrytown, New York, United States of America. Huang Mei M VelociGene, Regeneron Pharmaceuticals, Inc., Tarrytown, New York, United States of America. Fedorova Daria D VelociGene, Regeneron Pharmaceuticals, Inc., Tarrytown, New York, United States of America. Grant Craig C VelociGene, Regeneron Pharmaceuticals, Inc., Tarrytown, New York, United States of America. Miloscio Lawrence L VelociGene, Regeneron Pharmaceuticals, Inc., Tarrytown, New York, United States of America. Droguett Gustavo G VelociGene, Regeneron Pharmaceuticals, Inc., Tarrytown, New York, United States of America. Poueymirou William T WT VelociGene, Regeneron Pharmaceuticals, Inc., Tarrytown, New York, United States of America. Auerbach Wojtek W VelociGene, Regeneron Pharmaceuticals, Inc., Tarrytown, New York, United States of America. Yancopoulos George D GD VelociGene, Regeneron Pharmaceuticals, Inc., Tarrytown, New York, United States of America. Frendewey David D VelociGene, Regeneron Pharmaceuticals, Inc., Tarrytown, New York, United States of America. Rinn John J Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts, United States of America; Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America. Valenzuela David M DM VelociGene, Regeneron Pharmaceuticals, Inc., Tarrytown, New York, United States of America. eng Journal Article Research Support, Non-U.S. Gov't 2015 04 24 United States PLoS One 101285081 1932-6203 0 Membrane Transport Proteins 0 RNA, Long Noncoding 9068-45-5 lactose permease IM Alleles Animals Embryonic Development genetics Female Genes, Reporter genetics Male Mammals genetics Membrane Transport Proteins genetics Mice Mice, Inbred C57BL Mice, Knockout Phenotype RNA, Long Noncoding genetics Transcription, Genetic genetics Transcriptome genetics Competing Interests: K-MVL, GG, AA, J. Rojas, JQ, JP, DW, MH, D. Fedorova, CG, LM, GD, WTP, WA, GDY, DF, DMV are employees of VelociGene, Regeneron Pharmaceuticals, Inc. A patent application has been filed relating to this work, title: LincRNA-deficient non-human animals and application No: US 14/454,464 and PCT/US2014/050178. There is no product in development or marketed products to declare. This does not alter the authors' adherence to all the PLOS ONE policies on sharing data and materials.2014 11 2 2015 3 14 2015 4 25 6 0 2015 4 25 6 0 2016 4 12 6 0 2015 4 24 epublish 25909911 PMC4409293 10.1371/journal.pone.0125522 PONE-D-14-49290 Mattick JS. The genetic signatures of noncoding RNAs. PLoS Genet 2009;5: e1000459 10.1371/journal.pgen.1000459 10.1371/journal.pgen.1000459 PMC2667263 19390609 Carninci P, Kasukawa T, Katayama S, Gough J, Frith MC, Maeda N, et al. The transcriptional landscape of the mammalian genome. Science. 2005;309: 1559–1563. 16141072 Djebali S, Davis CA, Merkel A, Dobin A, Lassmann T, Mortazavi A, et al. Landscape of transcription in human cells. Nature. 2012;489: 101–108. 10.1038/nature11233 10.1038/nature11233 PMC3684276 22955620 Kapranov P, Cheng J, Dike S, Nix DA, Duttagupta R, Willingham AT, et al. RNA maps reveal new RNA classes and a possible function for pervasive transcription. Science. 2007;316: 1484–1488. 17510325 Derrien T, Johnson R, Bussotti G, Tanzer A, Djebali S, Tilgner H, et al. The GENCODE v7 catalog of human long noncoding RNAs: analysis of their gene structure, evolution, and expression. Genome Res. 2012;22: 1775–1789. 10.1101/gr.132159.111 10.1101/gr.132159.111 PMC3431493 22955988 Guttman M, Amit I, Garber M, French C, Lin MF, Feldser D, et al. Chromatin signature reveals over a thousand highly conserved large non-coding RNAs in mammals. Nature. 2009;458: 223–227. 10.1038/nature07672 10.1038/nature07672 PMC2754849 19182780 Khalil AM, Guttman M, Huarte M, Garber M, Raj A, Rivea Morales D, et al. Many human large intergenic noncoding RNAs associate with chromatin-modifying complexes and affect gene expression. Proc Natl Acad Sci U S A. 2009;106: 11667–11672. 10.1073/pnas.0904715106 10.1073/pnas.0904715106 PMC2704857 19571010 Capecchi MR. Generating mice with targeted mutations. Nat Med. 2001;7: 1086–1090. 11590420 Evans MJ. The cultural mouse. Nat Med. 2001;7: 1081–1083. 11590418 Smithies O. Forty years with homologous recombination. Nat Med. 2001;7: 1083–1086. 11590419 Prosser HM, Koike-Yusa H, Cooper JD, Law FC, Bradley A. A resource of vectors and ES cells for targeted deletion of microRNAs in mice. Nat Biotechnol. 2011;29: 840–845. 10.1038/nbt.1929 10.1038/nbt.1929 PMC3242032 21822254 Marahrens Y, Panning B, Dausman J, Strauss W, Jaenisch R. Xist-deficient mice are defective in dosage compensation but not spermatogenesis. Genes Dev. 1997;11: 156–166. 9009199 Sado T, Wang Z, Sasaki H, Li E. Regulation of imprinted X-chromosome inactivation in mice by Tsix. Development. 2001;128: 1275–1286. 11262229 Leighton PA, Ingram RS, Eggenschwiler J, Efstratiadis A, Tilghman SM. Disruption of imprinting caused by deletion of the H19 gene region in mice. Nature. 1995;375: 34–39. 7536897 Mohammad F, Mondal T, Guseva N, Pandey GK, Kanduri C. Kcnq1ot1 noncoding RNA mediates transcriptional gene silencing by interacting with Dnmt1. Development. 2010;137: 2493–2499. 10.1242/dev.048181 10.1242/dev.048181 20573698 Sleutels F, Zwart R, Barlow DP. The non-coding Air RNA is required for silencing autosomal imprinted genes. Nature. 2002;415: 810–813. 11845212 Takahashi N, Okamoto A, Kobayashi R, Shirai M, Obata Y, Ogawa H, et al. Deletion of Gtl2, imprinted non-coding RNA, with its differentially methylated region induces lethal parent-origin-dependent defects in mice. Hum Mol Genet 2009;18: 1879–1888. 10.1093/hmg/ddp108 10.1093/hmg/ddp108 19264764 Grote P, Wittler L, Hendrix D, Koch F, Wahrisch S, Beisaw A, et al. The tissue-specific lncRNA Fendrr is an essential regulator of heart and body wall development in the mouse. Dev Cell. 2013;24: 206–214. 10.1016/j.devcel.2012.12.012 10.1016/j.devcel.2012.12.012 PMC4149175 23369715 Zambrowicz BP, Imamoto A, Fiering S, Herzenberg LA, Kerr WG, Soriano P. Disruption of overlapping transcripts in the ROSA beta geo 26 gene trap strain leads to widespread expression of beta-galactosidase in mouse embryos and hematopoietic cells. Proc Natl Acad Sci U S A 1997;94: 3789–3794. PMC20519 9108056 Zhang B, Arun G, Mao YS, Lazar Z, Hung G, Bhattacharjee G, et al. The lncRNA Malat1 is dispensable for mouse development but its transcription plays a cis-regulatory role in the adult. Cell Rep. 2012;2: 111–123. 10.1016/j.celrep.2012.06.003 10.1016/j.celrep.2012.06.003 PMC3408587 22840402 Thai TH, Calado DP, Casola S, Ansel KM, Xiao C, Xue Y, et al. Regulation of the germinal center response by microRNA-155. Science. 2007;316: 604–608. 17463289 Valenzuela DM, Murphy AJ, Frendewey D, Gale NW, Economides AN, Auerbach W, et al. High-throughput engineering of the mouse genome coupled with high-resolution expression analysis. Nat Biotechnol. 2003;21: 652–659. 12730667 Adams DJ, Quail MA, Cox T, van der Weyden L, Gorick BD, Su Q, et al. A genome-wide, end-sequenced 129Sv BAC library resource for targeting vector construction. Genomics. 2005;86: 753–758. 16257172 Frendewey D, Chernomorsky R, Esau L, Om J, Xue Y, Murphy AJ, et al. The loss-of-allele assay for ES cell screening and mouse genotyping. Methods Enzymol. 2010;476: 295–307. 10.1016/S0076-6879(10)76017-1 10.1016/S0076-6879(10)76017-1 20691873 Dechiara TM, Poueymirou WT, Auerbach W, Frendewey D, Yancopoulos GD, Valenzuela DM. VelociMouse: fully ES cell-derived F0-generation mice obtained from the injection of ES cells into eight-cell-stage embryos. Methods Mol Biol. 2009;530: 311–324. 10.1007/978-1-59745-471-1_16 10.1007/978-1-59745-471-1_16 19266341 DeChiara TM, Poueymirou WT, Auerbach W, Frendewey D, Yancopoulos GD, Valenzuela DM. Producing fully ES cell-derived mice from eight-cell stage embryo injections. Methods Enzymol. 2010;476: 285–294. 10.1016/S0076-6879(10)76016-X 10.1016/S0076-6879(10)76016-X 20691872 Poueymirou WT, Auerbach W, Frendewey D, Hickey JF, Escaravage JM, Esau L, et al. F0 generation mice fully derived from gene-targeted embryonic stem cells allowing immediate phenotypic analyses. Nat Biotechnol. 2007;25: 91–99. 17187059 Cabili MN, Trapnell C, Goff L, Koziol M, Tazon-Vega B, Regev A, et al. Integrative annotation of human large intergenic noncoding RNAs reveals global properties and specific subclasses. Genes Dev. 2011;25: 1915–1927. 10.1101/gad.17446611 10.1101/gad.17446611 PMC3185964 21890647 Sauvageau M, Goff LA, Lodato S, Bonev B, Groff AF, Gerhardinger C, et al. Multiple knockout mouse models reveal lincRNAs are required for life and brain development. Elife (Cambridge). 2013;2: e01749 10.7554/eLife.01749 10.7554/eLife.01749 PMC3874104 24381249 Tsai MC, Manor O, Wan Y, Mosammaparast N, Wang JK, Lan F, et al. Long noncoding RNA as modular scaffold of histone modification complexes. Science. 2010;329: 689–693. 10.1126/science.1192002 10.1126/science.1192002 PMC2967777 20616235 Kozak M. An analysis of 5'-noncoding sequences from 699 vertebrate messenger RNAs. Nucleic Acids Res. 1987;15: 8125–8148. PMC306349 3313277 Hostikka SL, Capecchi MR. The mouse Hoxc11 gene: genomic structure and expression pattern. Mech Dev. 1998;70: 133–145. 9510030 Lu P, Yu Y, Perdue Y, Werb Z. The apical ectodermal ridge is a timer for generating distal limb progenitors. Development. 2008;135: 1395–1405. 10.1242/dev.018945 10.1242/dev.018945 PMC2574509 18359901 Schorderet P, Duboule D. Structural and functional differences in the long non-coding RNA hotair in mouse and human. PLoS Genet. 2011;7: e1002071 10.1371/journal.pgen.1002071 10.1371/journal.pgen.1002071 PMC3102750 21637793 Nagy A. Manipulating the mouse embryo: a laboratory manual Cold Spring Harbor: Cold Spring Harbor Laboratory Press; 2003. Dimri G, Lee X, Basile G, Acosta M, Scott G, Roskelley C, et al. A biomarker that identifies sensescent human cells in culture and in aging skin in vivo. Proc Natl Acad Sci U S A. 1995;92: 9363–9367. PMC40985 7568133 Carpenter S, Aiello D, Atianand MK, Ricci EP, Gandhi P, Hall LL, et al. A long noncoding RNA mediates both activation and repression of immune response genes. Science. 2013;341: 789–792. 10.1126/science.1240925 10.1126/science.1240925 PMC4376668 23907535 Li L, Liu B, Wapinski OL, Tsai MC, Qu K, Zhang J, et al. Targeted disruption of Hotair leads to homeotic transformation and gene derepression. Cell Rep. 2013;5: 3–12. 10.1016/j.celrep.2013.09.003 10.1016/j.celrep.2013.09.003 PMC4038295 24075995 Bishop NB, Stankiewicz P, Steinhorn RH. Alveolar capillary dysplasia. Am J Respir Crit Care Med. 2011;184: 172–179. 10.1164/rccm.201010-1697CI 10.1164/rccm.201010-1697CI PMC3172887 21471096 Szafranski P, Dharmadhikari AV, Brosens E, Gurha P, Kolodziejska KE, Zhishuo O, et al. Small noncoding differentially methylated copy-number variants, including lncRNA genes, cause a lethal lung developmental disorder. Genome Res. 2013;23: 23–33. 10.1101/gr.141887.112 10.1101/gr.141887.112 PMC3530681 23034409 Marin-Bejar O, Marchese FP, Athie A, Sanchez Y, Gonzalez J, Segura V, et al. Pint lincRNA connects the p53 pathway with epigenetic silencing by the Polycomb repressive complex 2. Genome Biol. 2013;14: R104 PMC4053822 24070194 Rufini A, Tucci P, Celardo I, Melino G. Senescence and aging: the critical roles of p53. Oncogene. 2013;32: 5129–5143. 10.1038/onc.2012.640 10.1038/onc.2012.640 23416979 25087174 2015 08 21 2021 10 21 1573-9368 24 1 2015 Feb Transgenic research Transgenic Res Generation of fertile and fecund F0 XY female mice from XY ES cells. 19 29 19-29 10.1007/s11248-014-9815-y Known examples of male to female sex reversal in mice are caused by either strain incompatibilities or mutations in genes required for male sex determination. The resultant XY females are often sterile or exhibit very poor fertility. We describe here embryonic stem (ES) cell growth conditions that promote the production of healthy, anatomically normal fertile and fecund female F0 generation mice completely derived from gene-targeted XY male ES cells. The sex reversal is a transient trait that is not transmitted to the F1 progeny. Growth media with low osmolality and reduced sodium bicarbonate, maintained throughout the gene targeting process, enhance the yield of XY females. As a practical application of the induced sex reversal, we demonstrate the generation of homozygous mutant mice ready for phenotypic studies by the breeding of F0 XY females with their isogenic XY male clonal siblings, thereby eliminating one generation of breeding and the associated costs. Kuno Junko J Regeneron Pharmaceuticals, Inc., 777 Old Saw Mill River Road, Tarrytown, NY, 10591, USA. Poueymirou William T WT Gong Guochun G Siao Chia-Jen CJ Clarke Georgia G Esau Lakeisha L Kojak Nada N Posca Julita J Atanasio Amanda A Strein John J Yancopoulos George D GD Lai Ka-Man Venus KM DeChiara Thomas M TM Frendewey David D Auerbach Wojtek W Valenzuela David M DM eng Journal Article 2014 08 03 Netherlands Transgenic Res 9209120 0962-8819 IM Animals Disorders of Sex Development genetics Embryonic Stem Cells cytology Female Fertility genetics Gene Targeting Gonadal Dysgenesis, 46,XY genetics Male Mice Microinjections Mutation Sex Determination Processes 2014 3 31 2014 7 2 2014 8 4 6 0 2014 8 5 6 0 2015 8 22 6 0 ppublish 25087174 10.1007/s11248-014-9815-y Science. 1994 Aug 5;265(5173):808-11 7914033 Dev Cell. 2012 Nov 13;23(5):1020-31 23102580 Cell. 2001 Aug 10;106(3):319-29 11509181 Nat Biotechnol. 2007 Jan;25(1):59-60 17211398 Nat Biotechnol. 2003 Jun;21(6):652-9 12730667 Development. 1989 Sep;107(1):95-105 2534072 Am J Physiol Renal Physiol. 2010 Jan;298(1):F24-34 19759267 Methods Enzymol. 2010;476:295-307 20691873 Sci Rep. 2013 Nov 05;3:3136 24190364 Science. 1993 Mar 19;259(5102):1760-3 7681220 Development. 2004 May;131(9):1891-901 15056615 Nat Rev Rheumatol. 2011 Jun 14;7(8):447-56 21670768 Proc Natl Acad Sci U S A. 1998 Nov 10;95(23):13453-8 9811821 Development. 1990 Jul;109(3):635-46 2401216 Science. 1982 Aug 6;217(4559):535-7 7089579 Dev Biol. 2008 Feb 1;314(1):71-83 18155190 Proc Natl Acad Sci U S A. 1995 Apr 11;92(8):3120-3 7724525 Nat Biotechnol. 2007 Jan;25(1):91-9 17187059 Nat Biotechnol. 2013 Jun;31(6):530-2 23666012 Nat Genet. 2003 May;34(1):32-3 12679814 Dev Cell. 2012 Nov 13;23(5):1032-42 23102581 PLoS Biol. 2009 Sep;7(9):e1000196 19753101 Development. 2002 Oct;129(19):4627-34 12223418 Bone. 2009 Feb;44(2):199-207 18845279 Cell. 2001 Mar 23;104(6):875-89 11290325 Nature. 2003 Nov 20;426(6964):291-5 14628051 Nature. 1998 Jun 18;393(6686):688-92 9641679 Biol Reprod. 2006 Jan;74(1):195-201 16207837 Am J Physiol Renal Physiol. 2008 Oct;295(4):F867-76 18480174 24381249 2015 03 30 2024 01 04 2050-084X 2 2013 Dec 31 eLife Elife Multiple knockout mouse models reveal lincRNAs are required for life and brain development. e01749 e01749 e01749 10.7554/eLife.01749 Many studies are uncovering functional roles for long noncoding RNAs (lncRNAs), yet few have been tested for in vivo relevance through genetic ablation in animal models. To investigate the functional relevance of lncRNAs in various physiological conditions, we have developed a collection of 18 lncRNA knockout strains in which the locus is maintained transcriptionally active. Initial characterization revealed peri- and postnatal lethal phenotypes in three mutant strains (Fendrr, Peril, and Mdgt), the latter two exhibiting incomplete penetrance and growth defects in survivors. We also report growth defects for two additional mutant strains (linc-Brn1b and linc-Pint). Further analysis revealed defects in lung, gastrointestinal tract, and heart in Fendrr(-/-) neonates, whereas linc-Brn1b(-/-) mutants displayed distinct abnormalities in the generation of upper layer II-IV neurons in the neocortex. This study demonstrates that lncRNAs play critical roles in vivo and provides a framework and impetus for future larger-scale functional investigation into the roles of lncRNA molecules. DOI: http://dx.doi.org/10.7554/eLife.01749.001. Sauvageau Martin M Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, United States. Goff Loyal A LA Lodato Simona S Bonev Boyan B Groff Abigail F AF Gerhardinger Chiara C Sanchez-Gomez Diana B DB Hacisuleyman Ezgi E Li Eric E Spence Matthew M Liapis Stephen C SC Mallard William W Morse Michael M Swerdel Mavis R MR D'Ecclessis Michael F MF Moore Jennifer C JC Lai Venus V Gong Guochun G Yancopoulos George D GD Frendewey David D Kellis Manolis M Hart Ronald P RP Valenzuela David M DM Arlotta Paola P Rinn John L JL eng RC1 CA147187 CA NCI NIH HHS United States R01 NS078164 NS NINDS NIH HHS United States P01 GM099117 GM NIGMS NIH HHS United States F30 NS062489 NS NINDS NIH HHS United States NS073124 NS NINDS NIH HHS United States NS062489 NS NINDS NIH HHS United States DP2 OD006670 OD NIH HHS United States R01 HG004037 HG NHGRI NIH HHS United States R01 NS062849 NS NINDS NIH HHS United States R01 NS073124 NS NINDS NIH HHS United States P50 HG006193 HG NHGRI NIH HHS United States DP2OD006670 OD NIH HHS United States NS078164 NS NINDS NIH HHS United States Journal Article Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't 2013 12 31 England Elife 101579614 2050-084X 0 RNA, Long Noncoding IM Elife. 2013 Dec 31;2:e01968. doi: 10.7554/eLife.01968 24381251 Animals Brain growth & development Mice Mice, Knockout RNA, Long Noncoding genetics physiology brain development developmental defect knockout mouse models lethality long noncoding RNAs VL: Employee of Regeneron Pharmaceuticals. GG: Employee of Regeneron Pharmaceuticals. GDY: Employee of Regeneron Pharmaceuticals. DF: Employee of Regeneron Pharmaceuticals. DMV: Employee of Regeneron Pharmaceuticals. The other authors declare that no competing interests exist. 2014 1 2 6 0 2014 1 2 6 0 2014 1 2 6 1 2014 1 1 epublish 24381249 PMC3874104 10.7554/eLife.01749 2/0/e01749 Almada AE, Wu X, Kriz AJ, Burge CB, Sharp PA. 2013. Promoter directionality is controlled by U1 snRNP and polyadenylation signals. Nature 499:360–363. 10.1038/nature12349 10.1038/nature12349 PMC3720719 23792564 Anguera MC, Ma W, Clift D, Namekawa S, Kelleher RJ, Lee JT. 2011. Tsx produces a long noncoding RNA and has general functions in the germline, stem cells, and brain. PLOS Genetics 7:e1002248. 10.1371/journal.pgen.1002248 10.1371/journal.pgen.1002248 PMC3164691 21912526 Arlotta P, Molyneaux BJ, Chen J, Inoue J, Kominami R, Macklis JD. 2005. Neuronal subtype-specific genes that control corticospinal motor neuron development in vivo. Neuron 45:207–221. 10.1016/j.neuron.2004.12.036 10.1016/j.neuron.2004.12.036 15664173 Arnold SJ, Huang G-J, Cheung AFP, Era T, Nishikawa S-I, Bikoff EK, Molnár Z, Robertson EJ, Groszer M. 2008. The T-box transcription factor Eomes/Tbr2 regulates neurogenesis in the cortical subventricular zone. Genes and Development 22:2479–2484. 10.1101/gad.475408 10.1101/gad.475408 PMC2546697 18794345 Berger UV, Hediger MA. 2001. Differential distribution of the glutamate transporters GLT-1 and GLAST in tanycytes of the third ventricle. The Journal of Comparative Neurology 433:101–114. 10.1002/cne.1128 10.1002/cne.1128 11283952 Brunner AL, Beck AH, Edris B, Sweeney RT, Zhu SX, Li R, Montgomery K, Varma S, Gilks T, Guo X, Foley JW, Witten DM, Giacomini CP, Flynn RA, Pollack JR, Tibshirani R, Chang HY, van de Rijn M, West RB. 2012. Transcriptional profiling of long non-coding RNAs and novel transcribed regions across a diverse panel of archived human cancers. Genome Biology 13:R75. 10.1186/gb-2012-13-8-r75 10.1186/gb-2012-13-8-r75 PMC4053743 22929540 Cabili MN, Trapnell C, Goff L, Koziol M, Tazon-Vega B, Regev A, Rinn JL. 2011. Integrative annotation of human large intergenic noncoding RNAs reveals global properties and specific subclasses. Genes and Development 25:1915–1927. 10.1101/gad.17446611 10.1101/gad.17446611 PMC3185964 21890647 Chen B, Schaevitz LR, McConnell SK. 2005. Fezl regulates the differentiation and axon targeting of layer 5 subcortical projection neurons in cerebral cortex. Proceedings of the National Academy of Sciences of the United States of America 102:17184–17189. 10.1073/pnas.0508732102 10.1073/pnas.0508732102 PMC1282569 16284245 Condie BG, Capecchi MR. 1993. Mice homozygous for a targeted disruption of Hoxd-3 (Hox-4.1) exhibit anterior transformations of the first and second cervical vertebrae, the atlas and the axis. Development 119:579–595 7910549 Cubelos B, Sebastian-Serrano A, Kim S, Moreno-Ortiz C, Redondo JM, Walsh CA, Nieto M. 2008. Cux-2 controls the proliferation of neuronal intermediate precursors of the cortical subventricular zone. Cerebral Cortex 18:1758–1770. 10.1093/cercor/bhm199 10.1093/cercor/bhm199 18033766 Dominguez MH, Ayoub AE, Rakic P. 2012. Pou-iii transcription factors (Brn1, Brn2, and Oct6) influence neurogenesis, molecular identity, and migratory destination of upper-layer cells of the cerebral cortex. Cerebral Cortex 23:2632–2643. 10.1093/cercor/bhs252 10.1093/cercor/bhs252 PMC3792741 22892427 Edwards AM, Isserlin R, Bader GD, Frye SV, Willson TM, Yu FH. 2011. Too many roads not taken. Nature 470:163–165. 10.1038/470163a 10.1038/470163a 21307913 Eggan KK, Akutsu HH, Loring JJ, Jackson-Grusby LL, Klemm MM, Rideout WMW, Yanagimachi RR, Jaenisch RR. 2001. Hybrid vigor, fetal overgrowth, and viability of mice derived by nuclear cloning and tetraploid embryo complementation. Proceedings of the National Academy of Sciences of the United States of America 98:6209–6214. 10.1073/pnas.101118898 10.1073/pnas.101118898 PMC33447 11331774 Englund C, Fink A, Lau C, Pham D, Daza RAM, Bulfone A, Kowalczyk T, Hevner RF. 2005. Pax6, Tbr2, and Tbr1 are expressed sequentially by radial glia, intermediate progenitor cells, and postmitotic neurons in developing neocortex. Journal of Neuroscience 25:247–251. 10.1523/JNEUROSCI.2899-04.2005 10.1523/JNEUROSCI.2899-04.2005 PMC6725189 15634788 Gascoigne DK, Cheetham SW, Cattenoz PB, Clark MB, Amaral PP, Taft RJ, Wilhelm D, Dinger ME, Mattick J. 2012. Pinstripe: a suite of programs for integrating transcriptomic and proteomic datasets identifies novel proteins and improves differentiation of protein-coding and non-coding genes. Bioinformatics 28:3042–3050. 10.1093/bioinformatics/bts582 10.1093/bioinformatics/bts582 23044541 Goff LA, Davila J, Swerdel MR, Moore JC, Cohen RI, Wu H, Sun YE, Hart RP. 2009. Ago2 Immunoprecipitation identifies predicted MicroRNAs in human embryonic stem cells and neural Precursors. PLOS ONE 4:e7192. 10.1371/journal.pone.0007192 10.1371/journal.pone.0007192 PMC2745660 19784364 Gomez JA, Wapinski OL, Yang YW, Bureau J-F, Gopinath S, Monack DM, Chang HY, Brahic M, Kirkegaard K. 2013. The NeST long ncRNA controls microbial susceptibility and epigenetic activation of the interferon-γ locus. Behavioural Brain Research 152:743–754. 10.1016/j.cell.2013.01.015 10.1016/j.cell.2013.01.015 PMC3577098 23415224 Gordon FE, Nutt CL, Cheunsuchon P, Nakayama Y, Provencher KA, Rice KA, Zhou Y, Zhang X, Klibanski A. 2010. Increased expression of angiogenic genes in the brains of mouse Meg3-null embryos. Endocrinology 151:2443–2452. 10.1210/en.2009-1151 10.1210/en.2009-1151 PMC2875815 20392836 Grote P, Wittler L, Hendrix D, Koch F, Währisch S, Beisaw A, Macura K, Bläss G, Kellis M, Werber M, Herrmann BG. 2013. The tissue-specific lncRNA Fendrr is an essential regulator of heart and body wall development in the mouse. Developmental Cell 24:206–214. 10.1016/j.devcel.2012.12.012 10.1016/j.devcel.2012.12.012 PMC4149175 23369715 Guo T, Mandai K, Condie BG, Wickramasinghe SR, Capecchi MR, Ginty DD. 2010. An evolving NGF-Hoxd1 signaling pathway mediates development of divergent neural circuits in vertebrates. Nature Neuroscience 14:31–36. 10.1038/nn.2710 10.1038/nn.2710 PMC3180918 21151121 Guttman M, Rinn JL. 2012. Modular regulatory principles of large non-coding RNAs. Nature 482:339–346. 10.1038/nature10887 10.1038/nature10887 PMC4197003 22337053 Guttman M, Amit I, Garber M, French C, Lin MF, Feldser D, Huarte M, Zuk O, Carey BW, Cassady JP, Cabili MN, Jaenisch R, Mikkelsen TS, Jacks T, Hacohen N, Bernstein BE, Kellis M, Regev A, Rinn JL, Lander ES. 2009. Chromatin signature reveals over a thousand highly conserved large non-coding RNAs in mammals. Nature 458:223–227. 10.1038/nature07672 10.1038/nature07672 PMC2754849 19182780 Guttman M, Donaghey J, Carey BW, Garber M, Grenier JK, Munson G, Young G, Lucas AB, Ach R, Bruhn L, Yang X, Amit I, Meissner A, Regev A, Rinn JL, Root DE, Lander ES. 2011. lincRNAs act in the circuitry controlling pluripotency and differentiation. Nature 477:295–300. 10.1038/nature10398 10.1038/nature10398 PMC3175327 21874018 Guttman M, Garber M, Levin JZ, Donaghey J, Robinson J, Adiconis X, Fan L, Koziol MJ, Gnirke A, Nusbaum C, Rinn JL, Lander ES, Regev A. 2010. Ab initio reconstruction of cell type-specific transcriptomes in mouse reveals the conserved multi-exonic structure of lincRNAs. Nature Biotechnology 28:503–510. 10.1038/nbt.1633 10.1038/nbt.1633 PMC2868100 20436462 Guttman M, Russell P, Ingolia NT, Weissman JS, Lander ES. 2013. Ribosome profiling provides evidence that large noncoding RNAs do not encode proteins. Behavioural Brain Research 154:240–251. 10.1016/j.cell.2013.06.009 10.1016/j.cell.2013.06.009 PMC3756563 23810193 Jabaudon D, Shnider JS, Tischfield DJ, Galazo MJ, Macklis JD. 2012. RORβ induces barrel-like neuronal clusters in the developing neocortex. Cerebral Cortex 22:996–1006. 10.1093/cercor/bhr182 10.1093/cercor/bhr182 PMC3328343 21799210 Khalil AM, Guttman M, Huarte M, Garber M, Raj A, Rivea Morales D, Thomas K, Presser A, Bernstein BE, van Oudenaarden A, Regev A, Lander ES, Rinn JL. 2009. Many human large intergenic noncoding RNAs associate with chromatin-modifying complexes and affect gene expression. Proceedings of the National Academy of Sciences of the United States of America 106:11667–11672. 10.1073/pnas.0904715106 10.1073/pnas.0904715106 PMC2704857 19571010 Koop KE, MacDonald LM, Lobe CG. 1996. Transcripts of Grg4, a murine groucho-related gene, are detected in adjacent tissues to other murine neurogenic gene homologues during embryonic development. Mechanisms of Development 59:73–87. 10.1016/0925-4773(96)00582-5 10.1016/0925-4773(96)00582-5 8892234 Kowalczyk MS, Higgs DR, Gingeras TR. 2012. Molecular biology: RNA discrimination. Nature 482:310–311. 10.1038/482310a 10.1038/482310a 22337043 Land PW, Simons DJ. 1985. Cytochrome oxidase staining in the rat SmI barrel cortex. The Journal of Comparative Neurology 238:225–235. 10.1002/cne.902380209 10.1002/cne.902380209 2413086 Lin MF, Jungreis I, Kellis M. 2011. PhyloCSF: a comparative genomics method to distinguish protein coding and non-coding regions. Bioinformatics 27:i275–i282. 10.1093/bioinformatics/btr209 10.1093/bioinformatics/btr209 PMC3117341 21685081 Mahlapuu M, Enerbäck S, Carlsson P. 2001. Haploinsufficiency of the forkhead gene Foxf1, a target for sonic hedgehog signaling, causes lung and foregut malformations. Development 128:2397–2406 11493558 McEvilly RJ. 2002. Transcriptional regulation of cortical neuron Migration by POU domain factors. Science 295:1528–1532. 10.1126/science.1067132 10.1126/science.1067132 11859196 Mercer TR, Dinger ME, Sunkin SM, Mehler MF, Mattick JS. 2008. Specific expression of long noncoding RNAs in the mouse brain. Proceedings of the National Academy of Sciences of the United States of America 105:716–721. 10.1073/pnas.0706729105 10.1073/pnas.0706729105 PMC2206602 18184812 Mercer TR, Mattick JS. 2013. Structure and function of long noncoding RNAs in epigenetic regulation. Nature Structural and Molecular Biology 20:300–307. 10.1038/nsmb.2480 10.1038/nsmb.2480 23463315 Merkin J, Russell C, Chen P, Burge CB. 2012. Evolutionary dynamics of gene and isoform regulation in mammalian tissues. Science 338:1593–1599. 10.1126/science.1228186 10.1126/science.1228186 PMC3568499 23258891 Molyneaux BJ, Arlotta P, Hirata T, Hibi M, Macklis JD. 2005. Fezl is required for the birth and specification of corticospinal motor neurons. Neuron 47:817–831. 10.1016/j.neuron.2005.08.030 10.1016/j.neuron.2005.08.030 16157277 Molyneaux BJ, Arlotta P, Menezes JRL, Macklis JD. 2007. Neuronal subtype specification in the cerebral cortex. Nature Reviews Neuroscience 8:427–437. 10.1038/nrn2151 10.1038/nrn2151 17514196 Moseley ML, Zu T, Ikeda Y, Gao W, Mosemiller AK, Daughters RS, Chen G, Weatherspoon MR, Clark HB, Ebner TJ, Day JW, Ranum LP. 2006. Bidirectional expression of CUG and CAG expansion transcripts and intranuclear polyglutamine inclusions in spinocerebellar ataxia type 8. Nature Genetics 38:758–769. 10.1038/ng1827 10.1038/ng1827 16804541 Nakagawa S, Naganuma T, Shioi G, Hirose T. 2011. Paraspeckles are subpopulation-specific nuclear bodies that are not essential in mice. The Journal of Cell Biology 193:31–39. 10.1083/jcb.201011110 10.1083/jcb.201011110 PMC3082198 21444682 Ørom UA, Derrien T, Beringer M, Gumireddy K, Gardini A, Bussotti G, Lai F, Zytnicki M, Notredame C, Huang Q, Guigo R, Shiekhattar R. 2010. Long noncoding RNAs with enhancer-like function in human cells. Cell 143:46–58. 10.1016/j.cell.2010.09.001 10.1016/j.cell.2010.09.001 PMC4108080 20887892 Pauli A, Valen E, Lin MF, Garber M, Vastenhouw NL, Levin JZ, Fan L, Sandelin A, Rinn JL, Regev A, Schier AF. 2012. Systematic identification of long noncoding RNAs expressed during zebrafish embryogenesis. Genome Research 22:577–591. 10.1101/gr.133009.111 10.1101/gr.133009.111 PMC3290793 22110045 Petersen CCH. 2007. The functional organization of the barrel cortex. Neuron 56:339–355. 10.1016/j.neuron.2007.09.017 10.1016/j.neuron.2007.09.017 17964250 Ponting CP, Oliver PL, Reik W. 2009. Evolution and functions of long noncoding RNAs. Behavioural Brain Research 136:629–641. 10.1016/j.cell.2009.02.006 10.1016/j.cell.2009.02.006 19239885 Poueymirou WT, Auerbach W, Frendewey D, Hickey JF, Escaravage JM, Esau L, Doré AT, Stevens S, Adams NC, Dominguez MG, Gale NW, Yancopoulos GD, DeChiara TM, Valenzuela DM. 2006. F0 generation mice fully derived from gene-targeted embryonic stem cells allowing immediate phenotypic analyses. Nature Biotechnology 25:91–99. 10.1038/nbt1263 10.1038/nbt1263 17187059 Qureshi IA, Mattick JS, Mehler MF. 2010. Long non-coding RNAs in nervous system function and disease. Brain Research 1338:20–35. 10.1016/j.brainres.2010.03.110 10.1016/j.brainres.2010.03.110 PMC2883659 20380817 Raj A, van den Bogaard P, Rifkin SA, van Oudenaarden A, Tyagi S. 2008. Imaging individual mRNA molecules using multiple singly labeled probes. Nature Methods 5:877–879. 10.1038/nmeth.1253 10.1038/nmeth.1253 PMC3126653 18806792 Ramos AD, Diaz A, Nellore A, Delgado RN, Park K-Y, Gonzales-Roybal G, Oldham MC, Song JS, Lim DA. 2013. Integration of genome-wide approaches identifies lncRNAs of adult neural stem cells and their progeny in vivo. Cell Stem Cell 12:616–628. 10.1016/j.stem.2013.03.003 10.1016/j.stem.2013.03.003 PMC3662805 23583100 Rinn JL, Chang HY. 2012. Genome regulation by long noncoding RNAs. Annual Review of Biochemistry 81:145–166. 10.1146/annurev-biochem-051410-092902 10.1146/annurev-biochem-051410-092902 PMC3858397 22663078 Ripoche MA, Kress C, Poirier F, Dandolo L. 1997. Deletion of the H19 transcription unit reveals the existence of a putative imprinting control element. Genes and Development 11:1596–1604. 10.1101/gad.11.12.1596 10.1101/gad.11.12.1596 9203585 Sessa A, Mao C-A, Hadjantonakis A-K, Klein WH, Broccoli V. 2008. Tbr2 directs conversion of radial glia into basal precursors and guides neuronal amplification by indirect neurogenesis in the developing neocortex. Neuron 60:56–69. 10.1016/j.neuron.2008.09.028 10.1016/j.neuron.2008.09.028 PMC2887762 18940588 Shen Y, Yue F, McCleary DF, Ye Z, Edsall L, Kuan S, Wagner U, Dixon J, Lee L, Lobanenkov VV, Ren B. 2012. A map of the cis-regulatory sequences in the mouse genome. Nature 488:116–120. 10.1038/nature11243 10.1038/nature11243 PMC4041622 22763441 Sigova AA, Mullen AC, Molinie B, Gupta S, Orlando DA, Guenther MG, Almada AE, Lin C, Sharp PA, Giallourakis CC, Young RA. 2013. Divergent transcription of long noncoding RNA/mRNA gene pairs in embryonic stem cells. Proceedings of the National Academy of Sciences of the United States of America 110:2876–2881. 10.1073/pnas.1221904110 10.1073/pnas.1221904110 PMC3581948 23382218 Struhl K. 2007. Transcriptional noise and the fidelity of initiation by RNA polymerase II. Nature Structural and Molecular Biology 14:103–105. 10.1038/nsmb0207-103 10.1038/nsmb0207-103 17277804 Sugitani Y, Nakai S, Minowa O, Nishi M, Jishage K-I, Kawano H, Mori K, Ogawa M, Noda T. 2002. Brn-1 and Brn-2 share crucial roles in the production and positioning of mouse neocortical neurons. Genes and Development 16:1760–1765. 10.1101/gad.978002 10.1101/gad.978002 PMC186401 12130536 Sun L, Goff LA, Trapnell C, Alexander R, Lo KA, Hacisuleyman E, Sauvageau M, Tazon-Vega B, Kelley DR, Hendrickson DG, Yuan B, Kellis M, Lodish HF, Rinn JL. 2013. Long noncoding RNAs regulate adipogenesis. Proceedings of the National Academy of Sciences of the United States of America 110:3387–3392. 10.1073/pnas.1222643110 10.1073/pnas.1222643110 PMC3587215 23401553 Szafranski P, Dharmadhikari AV, Brosens E, Gurha P, Kolodziejska KE, Zhishuo O, Dittwald P, Majewski T, Mohan KN, Chen B, Person RE, Tibboel D, de Klein A, Pinner J, Chopra M, Malcolm G, Peters G, Arbuckle S, Guiang SF, III, Hustead VA, Jessurun J, Hirsch R, Witte DP, Maystadt I, Sebire N, Fisher R, Langston C, Sen P, Stankiewicz P. 2013. Small noncoding differentially methylated copy-number variants, including lncRNA genes, cause a lethal lung developmental disorder. Genome Research 23:23–33. 10.1101/gr.141887.112 10.1101/gr.141887.112 PMC3530681 23034409 Tarabykin V, Stoykova A, Usman N, Gruss P. 2001. Cortical upper layer neurons derive from the subventricular zone as indicated by Svet1 gene expression. Development 128:1983–1993 11493521 Trapnell C, Hendrickson DG, Sauvageau M, Goff L, Rinn JL, Pachter L. 2012a. Differential analysis of gene regulation at transcript resolution with RNA-seq. Nature Biotechnology 31:46–53. 10.1038/nbt.2450 10.1038/nbt.2450 PMC3869392 23222703 Trapnell C, Pachter L, Salzberg SL. 2009. TopHat: discovering splice junctions with RNA-Seq. Bioinformatics 25:1105–1111. 10.1093/bioinformatics/btp120 10.1093/bioinformatics/btp120 PMC2672628 19289445 Trapnell C, Roberts A, Goff L, Pertea G, Kim D, Kelley DR, Pimentel H, Salzberg SL, Rinn JL, Pachter L. 2012b. Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nature Protocols 7:562–578. 10.1038/nprot.2012.016 10.1038/nprot.2012.016 PMC3334321 22383036 Tsai M-C, Manor O, Wan Y, Mosammaparast N, Wang JK, Lan F, Shi Y, Segal E, Chang HY. 2010. Long noncoding RNA as modular scaffold of histone modification complexes. Science 329:689–693. 10.1126/science.1192002 10.1126/science.1192002 PMC2967777 20616235 Ulitsky I, Bartel DP. 2013. lincRNAs: genomics, evolution, and mechanisms. Cell 154:26–46. 10.1016/j.cell.2013.06.020 10.1016/j.cell.2013.06.020 PMC3924787 23827673 Ulitsky I, Shkumatava A, Jan CH, Sive H, Bartel DP. 2011. Conserved function of lincRNAs in vertebrate embryonic development despite rapid sequence evolution. Cell 147:1537–1550. 10.1016/j.cell.2011.11.055 10.1016/j.cell.2011.11.055 PMC3376356 22196729 Valenzuela DM, Murphy AJ, Frendewey D, Gale NW, Economides AN, Auerbach W, Poueymirou WT, Adams NC, Rojas J, Yasenchak J, Chernomorsky R, Boucher M, Elsasser AL, Esau L, Zheng J, Griffiths JA, Wang X, Su H, Xue Y, Dominguez MG, Noguera I, Torres R, Macdonald LE, Stewart AF, DeChiara TM, Yancopoulos GD. 2003. High-throughput engineering of the mouse genome coupled with high-resolution expression analysis. Nature Biotechnology 21:652–659. 10.1038/nbt822 10.1038/nbt822 12730667 Visel A, Zhu Y, May D, Afzal V, Gong E, Attanasio C, Blow MJ, Cohen JC, Rubin EM, Pennacchio LA. 2010. Targeted deletion of the 9p21 non-coding coronary artery disease risk interval in mice. Nature 464:409–412. 10.1038/nature08801 10.1038/nature08801 PMC2938076 20173736 Wang KC, Yang YW, Liu B, Sanyal A, Corces-Zimmerman R, Chen Y, Lajoie BR, Protacio A, Flynn RA, Gupta RA, Wysocka J, Lei M, Dekker J, Helms JA, Chang HY. 2011. A long noncoding RNA maintains active chromatin to coordinate homeotic gene expression. Nature 472:120–124. 10.1038/nature09819 10.1038/nature09819 PMC3670758 21423168 Watson CM, Trainor PA, Radziewic T, Pelka GJ, Zhou SX, Parameswaran M, Quinlan GA, Gordon M, Sturm K, Tam PPL. 2008. Application of lacZ transgenic mice to cell lineage studies. Methods in Molecular Biology 461:149–164. 10.1007/978-1-60327-483-8_10 10.1007/978-1-60327-483-8_10 PMC3093767 19030795 Welker C, Woolsey TA. 1974. Structure of layer IV in the somatosensory neocortex of the rat: description and comparison with the mouse. The Journal of Comparative Neurology 158:437–453. 10.1002/cne.901580405 10.1002/cne.901580405 4141363 White JK Gerdin A-K Karp NA Ryder E Buljan M Bussell JN Salisbury J Clare S Ingham NJ Podrini C Houghton R Estabel J Bottomley JR Melvin DG Sunter D Adams NC, Sanger Institute Mouse Genetics Project, Tannahill D Logan DW Macarthur DG Flint J Mahajan VB Tsang SH Smyth I Watt FM Skarnes WC Dougan G Adams DJ Ramirez-Solis R Bradley A Steel KP. 2013. Genome-wide generation and systematic phenotyping of knockout mice reveals new roles for many genes. Behavioural Brain Research 154:452–464. 10.1016/j.cell.2013.06.022 10.1016/j.cell.2013.06.022 PMC3717207 23870131 Wong-Riley M. 1979. Changes in the visual system of monocularly sutured or enucleated cats demonstrable with cytochrome oxidase histochemistry. Brain Research 171:11–28. 10.1016/0006-8993(79)90728-5 10.1016/0006-8993(79)90728-5 223730 Yang L, Lin C, Jin C, Yang JC, Tanasa B, Li W, Merkurjev D, Ohgi KA, Meng D, Zhang J, Evans CP, Rosenfeld MG. 2013. lncRNA-dependent mechanisms of androgen-receptor-regulated gene activation programs. Nature 500:598–602. 10.1038/nature12451 10.1038/nature12451 PMC4034386 23945587 Yoon J-H, Abdelmohsen K, Srikantan S, Yang X, Martindale JL, De S, Huarte M, Zhan M, Becker KG, Gorospe M. 2012. LincRNA-p21 suppresses target mRNA translation. Molecular Cell 47:648–655. 10.1016/j.molcel.2012.06.027 10.1016/j.molcel.2012.06.027 PMC3509343 22841487 Zhang B, Arun G, Mao YS, Lazar Z, Hung G, Bhattacharjee G, Xiao X, Booth CJ, Wu J, Zhang C, Spector DL. 2012. The lncRNA Malat1 is dispensable for mouse development but its transcription plays a cis-regulatory role in the adult. Cell Reports 2:111–123. 10.1016/j.celrep.2012.06.003 10.1016/j.celrep.2012.06.003 PMC3408587 22840402 Zhu J, Sanborn JZ, Diekhans M, Lowe CB, Pringle TH, Haussler D. 2007. Comparative genomics search for losses of long-established genes on the human lineage. PLOS Computational Biology 3:e247–e247. 10.1371/journal.pcbi.0030247 10.1371/journal.pcbi.0030247 PMC2134963 18085818 Zimmer C. 2004. Dynamics of Cux2 expression suggests that an early pool of SVZ precursors is fated to become upper cortical layer neurons. Cerebral Cortex 14:1408–1420. 10.1093/cercor/bhh102 10.1093/cercor/bhh102 15238450 20885928 2011 07 14 2021 10 20 2042-0048 2011 2010 Sep 05 Veterinary medicine international Vet Med Int Oocyte source and hormonal stimulation for in vitro fertilization using sexed spermatozoa in cattle. 145626 10.4061/2011/145626 The aim of this study was to investigate the efficiency of in vitro embryo production in cattle utilizing sexed sperm from two bulls and oocytes recovered by OPU. Twenty donor animals were employed in eight OPU replicates: the first four OPU trials were conducted on animals without hormone treatment, and the last four were run on the same animals, following FSH subcutaneous and intramuscular administration. A higher rate of blastocyst development was recorded in stimulated, as compared to nonstimulated animals, (25.2% versus 12.8%, P = .001). Ocytes derived from slaughterhouse (SH) ovaries were also fertilized with sperm from the same bulls. Overall, non-sexed sperm used with oocytes derived from SH ovaries was significantly more efficient for blastocyst development than was sexed sperm with these same SH derived oocytes and sexed sperm with stimulated donor oocytes (39.8% versus 25.0% and 25.2%, P = .001). In conclusion, the use of sexed sperm with OPU-derived oocytes resulted in a significantly higher blastocyst development when donors were hormonally stimulated; furthermore, the level of efficiency achieved was comparable to that attained when the same sexed sperm was tested on oocytes derived from SH ovaries. Presicce Giorgio A GA Istituto Superiore di Sanità, Viale Regina Elena, 299, 00161 Rome, Italy. Xu Jie J Gong Guochun G Moreno Juan F JF Chaubal Sanjeev S Xue Fei F Bella Antonino A Senatore Elena M EM Yang Xiangzhong X Tian X Cindy XC Du Fuliang F eng Journal Article 2010 09 05 United States Vet Med Int 101524203 2042-0048 2010 5 4 2010 6 11 2010 7 8 2010 10 2 6 0 2010 10 5 6 0 2010 10 5 6 1 2010 9 5 epublish 20885928 PMC2946594 10.4061/2011/145626 145626 Cran DG. XY sperm separation and use in artificial insemination and other ARTs. Society of Reproduction and Fertility Supplement. 2007;65:475–491. 17644986 De Vries A, Overton M, Fetrow J, Leslie K, Eicker S, Rogers G. Exploring the impact of sexed semen on the structure of the dairy industry. Journal of Dairy Science. 2008;91(2):847–856. 18218773 Garner DL, Seidel GE., Jr. History of commercializing sexed semen for cattle. Theriogenology. 2008;69(7):886–895. 18343491 Wilson RD, Weigel KA, Fricke PM, et al. In vitro production of Holstein embryos using sex-sorted sperm and oocytes from selected cull cows. Journal of Dairy Science. 2005;88(2):776–782. 15653544 Wilson RD, Fricke PM, Leibfried-Rutledge ML, Rutledge JJ, Penfield CMS, Weigel KA. In vitro production of bovine embryos using sex-sorted sperm. Theriogenology. 2006;65(6):1007–1015. 16122781 Xu J, Guo Z, Su L, et al. Developmental potential of vitrified Holstein cattle embryos fertilized in vitro with sex-sorted sperm. Journal of Dairy Science. 2006;89(7):2510–2518. 16772569 Maxwell WMC, Evans G, Hollinshead FK, et al. Integration of sperm sexing technology into the ART toolbox. Animal Reproduction Science. 2004;82-83:79–95. 15271445 Presicce GA. Reproduction in the water buffalo. Reproduction in Domestic Animals. 2007;42, supplement 2:24–32. 17688599 Liang XW, Lu YQ, Chen MT, et al. In vitro embryo production in buffalo (Bubalus bubalis) using sexed sperm and oocytes from ovum pick up. Theriogenology. 2008;69(7):822–826. 18336893 Wheeler MB, Rutledge JJ, Fischer-Brown A, VanEtten T, Malusky S, Beebe DJ. Application of sexed semen technology to in vitro embryo production in cattle. Theriogenology. 2006;65(1):219–227. 16263159 Lu KH, Seidel GE., Jr. Effects of heparin and sperm concentration on cleavage and blastocyst development rates of bovine oocytes inseminated with flow cytometrically-sorted sperm. Theriogenology. 2004;62(5):819–830. 15251233 Palma GA, Olivier NS, Neumüller CH, Sinowatz F. Effects of sex-sorted spermatozoa on the efficiency of in vitro fertilization and ultrastructure of in vitro produced bovine blastocysts. Anatomia, Histologia, Embryologia. 2008;37(1):67–73. 18197903 Zhang M, Lu KH, Seidel GE., Jr. Development of bovine embryos after in vitro fertilization of oocytes with flow cytometrically sorted, stained and unsorted sperm from different bulls. Theriogenology. 2003;60(9):1657–1663. 14580648 Kruip TA, Boni R, Wurth YA, Roelofsen MWM, Pieterse MC. Potential use of ovum pick-up for embryo production and breeding in cattle. Theriogenology. 1994;42(4):675–684. 16727573 De Roover R, Genicot G, Leonard S, Bols P, Dessy F. Ovum pick up and in vitro embryo production in cows superstimulated with an individually adapted superstimulation protocol. Animal Reproduction Science. 2005;86(1-2):13–25. 15721656 Humblot P, Holm P, Lonergan P, et al. Effect of stage of follicular growth during superovulation on developmental competence of bovine oocytes. Theriogenology. 2005;63(4):1149–1166. 15710200 Chaubal SA, Ferre LB, Molina JA, et al. Hormonal treatments for increasing the oocyte and embryo production in an OPU-IVP system. Theriogenology. 2007;67(4):719–728. 17140652 Presicce GA, Senatore EM, Santis GD, et al. Hormonal stimulation and oocyte maturational competence in prepuberal Mediterranean Italian buffaloes (Bubalus bubalis) Theriogenology. 2002;57(7):1877–1884. 12041691 De Roover R, Feugang JMN, Bols PEJ, Genicot G, Hanzen CH. Effects of ovum pick-up frequency and fsh stimulation: a retrospective study on seven years of beef cattle in vitro embryo production. Reproduction in Domestic Animals. 2008;43(2):239–245. 18226024 Tamassia M, Heyman Y, Lavergne Y, et al. Evidence of oocyte donor cow effect over oocyte production and embryo development in vitro. Reproduction. 2003;126(5):629–637. 14611636 Fujita T, Umeki H, Shimura H, Kugumiya K, Shiga K. Effect of group culture and embryo-culture conditioned medium on development of bovine embryos. Journal of Reproduction and Development. 2006;52(1):137–142. 16293943 Johnson LA, Flook JP, Hawk HW. Sex preselection in rabbits: live births from X and Y sperm separated by DNA and cell sorting. Biology of Reproduction. 1989;41(2):199–203. 2804212 Pieterse MC, Vos PLAM, Kruip THAM, et al. Transvaginal ultrasound guided follicular aspiration of bovine oocytes. Theriogenology. 1991;35(4):857–862. 16726954 Brackett BG, Bousquet D, Boice ML, Donawick WJ, Evans JF, Dressel MA. Normal development following in vitro fertilization in the cow. Biology of Reproduction. 1982;27(1):147–158. 6896830 Lonergan P, Fair T, Corcoran D, Evans ACO. Effect of culture environment on gene expression and developmental characteristics in IVF-derived embryos. Theriogenology. 2006;65(1):137–152. 16289260 Nagao Y, Iijima R, Saeki K. Interaction between embryos and culture conditions during in vitro development of bovine early embryos. Zygote. 2008;16(2):127–133. 18405433 Lopes AS, Martinussen T, Greve T, Callesen H. Effect of days post-partum, breed and ovum pick-up scheme on bovine oocyte recovery and embryo development. Reproduction in Domestic Animals. 2006;41(3):196–203. 16689881 Su L, Yang S, He X, et al. Effect of donor age on the developmental competence of bovine oocytes retrieved by Ovum Pick Up. Reproduction in Domestic Animals. In press. 19281593 Bols PE, Van Soom A, Ysebaert MT, Vandenheede JMM, De Kruif A. Effects of aspiration vacuum and needle diameter on cumulus oocyte complex morphology and developmental capacity of bovine oocytes. Theriogenology. 1996;45(5):1001–1014. 16727859 Bungartz L, Lucas-Hahn A, Rath D, Niemann H. Collection of oocytes from cattle via follicular aspiration aided by ultrasound with or without gonadotropin pretreatment and in different reproductive stages. Theriogenology. 1995;43(3):667–675. 16727658 Merton JS, De Roos APW, Mullaart E, et al. Factors affecting oocyte quality and quantity in commercial application of embryo technologies in the cattle breeding industry. Theriogenology. 2003;59(2):651–674. 12499010 Hasler JF, McCauley AD, Schermerhorn EC, Foote RH. Superovulatory responses of Holstein cows. Theriogenology. 1983;19(1):83–99. Jensen AM, Greve T, Madej A, Edqvist L-E. Endocrine profiles and embryo quality in the PMSG-PGF2α treated cow. Theriogenology. 1982;18(1):33–44. 16725723 Bo GA, Hockley DK, Nasser LF, Mapletoft RJ. Superovulatory response to a single subcutaneous injection of Folltropin-V in beef cattle. Theriogenology. 1994;42(6):963–975. 16727601 Yamamoto M, Ooe M, Kawaguchi M, Suzuki T. Superovulation in the cow with a single intramuscular injection of FSH dissolved in polyvinylpyrrolidone. Theriogenology. 1994;41(3):747–755. 16727429 Chaubal SA, Molina JA, Ohlrichs CL, et al. Comparison of different transvaginal ovum pick-up protocols to optimise oocyte retrieval and embryo production over a 10-week period in cows. Theriogenology. 2006;65(8):1631–1648. 16243385 Gibbons JR, Beal WE, Krisher RL, Faber EG, Pearson RE, Gwazdauskas FC. Effects of once- versus twice-weekly transvaginal follicular aspiration on bovine oocyte recovery and embryo development. Theriogenology. 1994;42(3):405–419. 16727548 Rick G, Hadeler DG, Lemme E, et al. Long term OPU in heifers from 6 to 15 months of age. Theriogenology. 1996;45(1):p. 356. Blondin P, Coenen K, Guilbault LA, Sirard M-A. Superovulation can reduce the developmental competence of bovine embryos. Theriogenology. 1996;46(7):1191–1203. 16727982 Gibbons JR, Wiltbank MC, Ginther OJ. Functional interrelationships between follicles greater than 4 mm and the follicle stimulating hormone surge in heifers. Biology of Reproduction. 1997;42:405–419. 9369172 Blondin P, Sirard M-A. Oocyte and follicular morphology as determining characteristics for developmental competence in bovine oocytes. Molecular Reproduction and Development. 1995;41(1):54–62. 7619506 Carolan C, Lonergan P, Khatir H, Mermillod P. In vitro production of bovine embryos using individual oocytes. Molecular Reproduction and Development. 1996;45(2):145–150. 8914071 Keefer CL, Stice SL, Paprocki AM, Golueke P. In vitro culture of bovine IVM-IVF embryos: cooperative interaction among embryos and the role of growth factors. Theriogenology. 1994;41(6):1323–1331. 16727487 Donnay I, Van Langendonckt A, Auquier P, et al. Effects of co-culture and embryo number on the in vitro development of bovine embryos. Theriogenology. 1997;47(8):1549–1561. 16728097 Palma GA, Clement-Sengewald A, Berg U, Brem G. Role of embryo number in the development of in vitro produced bovine embryos. Theriogenology. 1992;37:p. 271. Ward FA, Lonergan P, Enright BP, Boland MP. Factors affecting recovery and quality of oocytes for bovine embryo production in vitro using ovum pick-up technology. Theriogenology. 2000;54(3):433–446. 11051326 Ferry L, Mermillod P, Massip A, Dessy F. Bovine embryos cultured in serum-poor oviduct-conditioned medium need cooperation to reach the blastocyst stage. Theriogenology. 1994;42(3):445–453. 16727551 Senatore EM, Mannino ME, Suarez Novoa MV, et al. Synergistic effect on embryo development by inclusion of supplemental embryos embedded in agar chips. Reproduction, Fertility and Development. 2009;21(1):p. 208. 20677930 2010 11 16 2016 05 11 2152-4998 12 2 2010 Apr Cellular reprogramming Cell Reprogram Culture conditions and enzymatic passaging of bovine ESC-like cells. 151 160 151-60 10.1089/cell.2009.0049 The goals of the current study were to (1) improve culture conditions and (2) chemical passaging of bovine embryonic stem cell-like (bESC-like) cells. Specifically, the effects of human leukemia inhibitory factor (hLIF), two types of feeders, mouse embryonic fibroblast (MEF) and bovine embryonic fibroblast (BEF), as well as three different enzymatic treatments including Trypsin-EDTA, TrypLE, and Liberase Blendzymes 3 were investigated. The addition of hLIF at 1000 U/mL to the culture medium (41.2 and 36.9%), and the use of either MEF or BEF feeders (40.3 and 38.1%) had no significant effect on the ability of inner cell masses (ICMs) to form primary cell colonies compared to controls. All bESC-like cells were first dissociated mechanically for three passages followed by enzymatic dissociation. The ability to maintain ESC morphology to passage 10 was compared among the three enzymes above. More bESC-like cell lines survived beyond passage 10 when treated with TrypLE compared to Trypson-EDTA (28.8 and 12.6%; p < 0.05), and bESC-like cells differentiated quickly when treated with Liberase Blendzyme 3. The bESC-like cells generated in our study displayed typical stem cell morphology and expressed specific markers such as SSEA-1, AP, OCT-4, and Nanog. When removed from feeders, these bESC-like cells formed embryoid bodies (EBs) in a suspension culture. When EBs were cultured on tissue culture plates, they differentiated into various cell types. In summary, we were able to culture bESC-like cells more than 10 passages by enzymatic dissociation, which is important in gene targeting, maintenance, and banking of bESC lines. Gong Guochun G Department of Animal Science and Center for Regenerative Biology, University of Connecticut , Storrs, CT 06269-4243, USA. Roach Marsha L ML Jiang Le L Yang Xiangzhong X Tian Xiuchun Cindy XC eng Journal Article United States Cell Reprogram 101528176 2152-4971 0 Culture Media 0 Leukemia Inhibitory Factor IM Animals Cattle Cell Culture Techniques Cell Differentiation Cells, Cultured cytology Culture Media pharmacology Embryo Culture Techniques methods Embryonic Stem Cells cytology Female Fertilization in Vitro Humans Leukemia Inhibitory Factor metabolism Mice Signal Transduction Time Factors 2010 8 4 6 0 2010 8 4 6 0 2010 11 17 6 0 ppublish 20677930 10.1089/cell.2009.0049 20432462 2010 08 16 2015 11 19 1097-4652 224 3 2010 Sep Journal of cellular physiology J Cell Physiol Direct and progressive differentiation of human embryonic stem cells into the chondrogenic lineage. 664 671 664-71 10.1002/jcp.22166 Treatment of common and debilitating degenerative cartilage diseases particularly osteoarthritis is a clinical challenge because of the limited capacity of the tissue for self-repair. Because of their unlimited capacity for self-renewal and ability to differentiate into multiple lineages, human embryonic stem cells (hESCs) are a potentially powerful tool for repair of cartilage defects. The primary objective of the present study was to develop culture systems and conditions that enable hESCs to directly and uniformly differentiate into the chondrogenic lineage without prior embryoid body (EB) formation, since the inherent cellular heterogeneity of EBs hinders obtaining homogeneous populations of chondrogenic cells that can be used for cartilage repair. To this end, we have subjected undifferentiated pluripotent hESCs to the high density micromass culture conditions we have extensively used to direct the differentiation of embryonic limb bud mesenchymal cells into chondrocytes. We report that micromass cultures of pluripotent hESCs undergo direct, rapid, progressive, and substantially uniform chondrogenic differentiation in the presence of BMP2 or a combination of BMP2 and TGF-beta1, signaling molecules that act in concert to regulate chondrogenesis in the developing limb. The gene expression profiles of hESC-derived cultures harvested at various times during the progression of their differentiation has enabled us to identify cultures comprising cells in different phases of the chondrogenic lineage ranging from cultures just entering the lineage to well differentiated chondrocytes. Thus, we are poised to compare the abilities of hESC-derived progenitors in different phases of the chondrogenic lineage for cartilage repair. (c) 2010 Wiley-Liss, Inc. Gong Guochun G Department of Reconstructive Sciences, Center for Regenerative Medicine and Skeletal Development, University of Connecticut Health Center, Farmington, Connecticut 06030, USA. Ferrari Deborah D Dealy Caroline N CN Kosher Robert A RA eng Journal Article Research Support, Non-U.S. Gov't United States J Cell Physiol 0050222 0021-9541 0 Biomarkers 0 Bone Morphogenetic Protein 2 0 Transforming Growth Factor beta1 IM Animals Biomarkers metabolism Bone Morphogenetic Protein 2 metabolism Cell Culture Techniques Cell Differentiation physiology Cell Lineage Cells, Cultured Chondrocytes cytology physiology Chondrogenesis physiology Embryo, Mammalian cytology physiology Embryonic Stem Cells cytology physiology Gene Expression Profiling Gene Expression Regulation, Developmental Humans Mice Pluripotent Stem Cells cytology physiology Transforming Growth Factor beta1 metabolism 2010 5 1 6 0 2010 5 1 6 0 2010 8 17 6 0 ppublish 20432462 10.1002/jcp.22166 18941633 2009 01 13 2018 11 13 1932-6203 3 10 2008 PloS one PLoS One Cattle mammary bioreactor generated by a novel procedure of transgenic cloning for large-scale production of functional human lactoferrin. e3453 e3453 e3453 10.1371/journal.pone.0003453 Large-scale production of biopharmaceuticals by current bioreactor techniques is limited by low transgenic efficiency and low expression of foreign proteins. In general, a bacterial artificial chromosome (BAC) harboring most regulatory elements is capable of overcoming the limitations, but transferring BAC into donor cells is difficult. We describe here the use of cattle mammary bioreactor to produce functional recombinant human lactoferrin (rhLF) by a novel procedure of transgenic cloning, which employs microinjection to generate transgenic somatic cells as donor cells. Bovine fibroblast cells were co-microinjected for the first time with a 150-kb BAC carrying the human lactoferrin gene and a marker gene. The resulting transfection efficiency of up to 15.79 x 10(-2) percent was notably higher than that of electroporation and lipofection. Following somatic cell nuclear transfer, we obtained two transgenic cows that secreted rhLF at high levels, 2.5 g/l and 3.4 g/l, respectively. The rhLF had a similar pattern of glycosylation and proteolytic susceptibility as the natural human counterpart. Biochemical analysis revealed that the iron-binding and releasing properties of rhLF were identical to that of native hLF. Importantly, an antibacterial experiment further demonstrated that rhLF was functional. Our results indicate that co-microinjection with a BAC and a marker gene into donor cells for somatic cell cloning indeed improves transgenic efficiency. Moreover, the cattle mammary bioreactors generated with this novel procedure produce functional rhLF on an industrial scale. Yang Penghua P State Key Laboratory for Agrobiotechnology, China Agricultural University, Beijing, People's Republic of China. Wang Jianwu J Gong Guochun G Sun Xiuzhu X Zhang Ran R Du Zhuo Z Liu Ying Y Li Rong R Ding Fangrong F Tang Bo B Dai Yunping Y Li Ning N eng Journal Article Research Support, Non-U.S. Gov't 2008 10 20 United States PLoS One 101285081 1932-6203 0 Recombinant Proteins EC 3.4.21.- Lactoferrin IM Animals Animals, Genetically Modified genetics Bioreactors Cattle Cell Transplantation Fibroblasts metabolism Humans Lactoferrin biosynthesis genetics Mammary Glands, Animal metabolism Nuclear Transfer Techniques Recombinant Proteins Transfection methods Competing Interests: The authors have declared that no competing interests exist.2008 6 7 2008 9 17 2008 10 23 9 0 2009 1 14 9 0 2008 10 23 9 0 2008 10 20 ppublish 18941633 PMC2565487 10.1371/journal.pone.0003453 Lonnerdal B, Iyer S. Lactoferrin: Molecular Structure and Biological Function. Annu Rev Nutr. 1995;15:93–110. 8527233 Lönnerdal B, Bryantthe A. Absorption of iron from recombinant human lactoferrin in young US women. Am J Clin Nutr. 2006;83:305–309. 16469988 Zimecki M, Artym J, Chodaczek G, Kocieba M, Kruzel ML. Protective effects of lactoferrin in Escherichia coli-induced bacteremia in mice: Relationship to reduced serum TNF alpha level and increased turnover of neutrophils. Inflam Res. 2004;53:292–296. 15241563 Wakabayashi H, Takakura N, Yamauchi K, Teraguchi S, Uchida K, et al. Effect of lactoferrin feeding on the host antifungal response in guinea-pigs infected or immunised with Trichophyton mentagrophytes. J Med Microbiol. 2002;51:844–850. 12435063 Isamida T, Tanaka T, Omata Y, Yamauchi K, Shimazachi K, et al. Protective effect of lactoferrin against Toxoplasma gondii infection in mice. J Vet Med Sci. 1998;60:241–244. 9524950 Strate BWA, Beljaars L, Molema G, Harmsen MC, Meijer DKF. Antiviral activities of lactoferrin. Antivir Res. 2001;52:225–239. 11675140 Baveye S, Elass E, Mazurier J, Spik G, Legrand D. Lactoferrin: a multifunctional glycoprotein involved in the modulation of the inflammatory process. Clin Chem Lab Med. 1999;37:281–286. 10353473 Vorland LH. Lactoferrin: a multifunctional glycoprotein. APMIS. 1999;107:971–981. 10598868 Naot D, Grey A, Reid IR, Cornish J. Lactoferrin-a novel bone growth factor. Clin Med Res. 2005;3:93–101. PMC1183439 16012127 Ward PP, May GS, Headon DR, Conneely OM. An inducible expression system for the production of human lactoferrin in Aspergillus nidulans. Gene. 1992;122:219–223. 1452033 Ward PP, Piddington CS, Cunningham GA, Zhou X, Wyatt RD, et al. A system for production of commercial quantities of human lactoferrin: a broad spectrum natural antibiotic. Biotechnology (N Y) 1995;13:498–503. 9634791 Liang QW, Richardson T. Expression and characterization of human lactoferrin in yeast Saccharomyces cerevisiae. J Agric Food Chem. 1993;41:1800–1807. Stowell KM, Rodo TA, Funk WD, Tweeid JW. Expression of cloned human lactoferrin in baby-hamster kidney cells. Biochem J. 1991;276:349–355. PMC1151098 2049066 Legrand D, Salmon V, Coddeville B, Benaissa M, Plancke Y, et al. Structural determination of two N-linked glycans isolated from recombinant human lactoferrin expressed in BHK cells. FBES letter. 1995;365:57–60. 7774715 Salmon V, Legrand D, Slomianny MC, el Yazidi I, Spik G, et al. Production of human lactoferrin in transgenic tobacco plants. Protein Expr Purif. 1998;13:127–135. 9631525 Chong DK, Langridge WH. Expression of full-length bioactive antimicrobial human lactoferrin in potato plants. Transgenic Res. 2000;9:71–78. 10853271 Platenburg GJ, Kootwijk EP, Kooiman PM, Woloshuk SL, Nuijens JH, et al. Expression of human lactoferrin in milk of transgenic mice. Transgenic Res. 1994;3:99–108. 8193642 Nuijens JH, van Berkel PH, Geerts ME, Hartevelt PP, de Boer HA, et al. Characterization of recombinant human lactoferrin secreted in milk of transgenic mice. J Biol Chem. 1997;272:8802–8807. 9079716 Wall RJ. Biotechnology for the production of modified and innovative animal products: transgenic livestock bioreactors. Livest Prod Sci. 1999;59:243–255. Wall RJ, Powell AM, Paape MJ, Kerr DE, Bannerman DD, et al. Genetically enhanced cows resist intramammary Staphylococcus aureus infection. Nat Biotechnol. 2005;23:445–451. 15806099 Brophy B, Smolenski G, Wheeler T, Wells D, L'Huillier P, et al. Cloned transgenic cattle produce milk with higher levels of beta-casein and kappa-casein. Nat Biotechnol. 2003;21:157–162. 12548290 van Berkel HC, Welling MW, Geerts M, van Veen HA, Ravensbergen B, et al. Large scale production of recombinant human lactoferrin in the milk of transgenic cows. Nat Biotech. 2002;20:484–487. 11981562 Krimpenfort P, Rademakers A, Eyestone W, van der Schans A, van den Broek S, et al. Generation of transgenic dairy cattle using ‘in vitro’ embryo production. Biotechnology (N Y) 1991;9:844–847. 1367358 Liu Z, Zhao C, Fan B, Dai Y, Zhao Z, et al. Variable expression of human lactoferrin gene in mice milk driven by its 90 KB upstream flanking sequences. Anim Biotechnol. 2004;15:21–31. 15248598 Dean W, Santos F, Stojkovic M, Zakhartchenko V, Walter J, et al. Conservation of methylation reprogramming in mammalian development: Aberrant reprogramming in cloned embryos. Proc Natl Acad Sci U S A. 2001;98:13734–13738. PMC61110 11717434 Wee G, Koo D-B, Song B-S, Kim J-S, Kang M-J, et al. Inheritable Histone H4 Acetylation of Somatic Chromatins in Cloned Embryos. J Biol Chem. 2006;281:6048–6057. 16371357 van Berkel PHC, Geerts MDJ, Van Veen HA, KooIman PM, Pieper FR, et al. Glycosylated and unglycosylated human lactoferrins both bind iron and show identical affinities towards human lysozyme and bacterial lipopolysaccharide, but differ in their susceptibilities towards tryptic proteolysis. Biochem J. 1995;312:107–114. PMC1136233 7492299 Giraldo P, Montoliu L. Size matters: use of YACs, BACs and PACs in transgenic animals. Transgenic Res. 2001;10:83–103. 11305364 Hejna JA, Johnstone PL, Kohler SL, Bruun DA, Reifsteck CA, et al. Functional complementation by electroporation of human BACs into mammalian fibroblast cells. Nucleic Acids Res. 1998;26:1124–1125. PMC147338 9461477 Magin-Lachmann C, Kotzamanis G, D'Aiuto L, Cooke H, Huxley C, et al. In vitro and in vivo delivery of intact BAC DNA – comparison of different methods. J Gene Med. 2004;6:195–209. 14978773 Kittler R, Pelletier L, Ma C, Poser I, Fischer S, et al. RNA interference rescue by bacterial artificial chromosome transgenesis in mammalian tissue culture cells. Proc Natl Acad Sci U S A. 2005;102:2396–2401. PMC548992 15695330 Xie HX. Differences in the efficiency and stability of gene expression after transfection and nuclear injection: a study with a chick delta-crystallin gene. Cell Struct Funct. 1983;8:315–325. 6673837 Zhang X-F, Wu G-X, Chen J-Q, Zhang A-M, Liu S-G, et al. Transfer of an expression YAC into goat fetal fibroblasts by cell fusion for mammary gland bioreactor. Biochemical and Biophysical Research Communications. 2005;333:58. 15936717 Yang XW, Model P, Heintz N. Homologous recombination based modification in Esherichia coli and germline transmission in transgenic mice of a bacterial artificial chromsome. Nat Biotechnol. 1997;15:859–865. 9306400 Eyestone WH. Production and breeding of transgenic cattle using in vitro embryo production technology. Theriogenology. 1999;51:509–517. 10729109 Takahashi S, Ito Y. Evaluation of meat products from cloned cattle: biological and biochemical properties. Cloning Stem Cells. 2004;6:165–171. 15268791 Tian XC, Kubota C, Sakashita K, Izaike Y, Okano R, et al. Meat and milk compositions of bovine clones. Proc Natl Acad Sci U S A. 2005;102:6261–6266. PMC1088367 15829585 Walsh MK, Lucey JA, Govindasamy-Lucey S, Pace MM, Bishop MD. Comparison of milk produced by cows cloned by nuclear transfer with milk from non-cloned cows. Cloning Stem Cells. 2003;5:213. 14588139 van Veen HA, Geerts MEJ, van Berkel PHC, Nuijens JH. Analytical cation-exchange chromatography to assess the identity, purity, and N-terminal integrity of human lactoferrin. Anal Biochem. 2002;309:60–66. 12381362 Foley AA, Bates GW. The purification of lactoferrin from human whey by batch extraction. Anal Biochem. 1987;162:296–300. 3496808 Palmano KP, Elgar DF. Detection and quantitation of lactoferrin in bovine whey samples by reversed phase high-performance liquid chromatography on polystyrene-divinylbenzene. J Chromatogr A. 2002;947:307–311. 11883664 Zhao C, Liu Z, Fan B, Dai Y, Wang L, et al. Differential glycosylation of rhLf expressed in the mammary gland of transgenic mice. Anim Biotechnol. 2006;17:13–20. 16621756 Spik G, Strecker G, Fournet B, Bouquelet S, Montreuil J, et al. Primary structure of the glycans from human lactotransferrin. Eur J Biochem. 1982;121:413–419. 7060557 Petit BS, Dubos JW, Chirat F, Coddeville B, Demaizieres G, et al. Comparative analysis of the site-specific N-glycosylation of human lactoferrin produced in maize and tobacco plants. Eur J Biochem. 2003;270:3235–3242. 12869199 Lopez M, Coddeville B, Langridge J, Plancke Y, Sautiere P, et al. Microheterogeneity of the oligosaccharides carried by the recombinant bovine lactoferrin expressed in Mamestra brassicae cells. Glycoblology. 1997;7:635–651. 9254046 Davidson LA, Lonnerdal B. Persistence of human milk proteins in the breast-fed infant. Acta Paediatr Scand. 1987;76:733–740. 3661174 van Veen HA, Geerts MEJ, van Berkel PHC, Nuijens JH. The role of N-linked glycosylation in the protection of human and bovine lactoferrin against tryptic proteolysis. Eur J Biochem. 2004;271:678–684. 14764083 Crichton RR, Charloteaux-Wauters M. Iron transport and storage. Eur J Biochem. 1987;164:485–506. 3032619 Iyer S, Lonnerdal B. Lactoferrin, lactoferrin receptors and iron metabolism. Eur J Clin Nutr. 1993;47:232–241. 8491159 Levay PF, Viljoen M. Lactoferrin: ageneral review. Haematologica. 1995;80:252–267. 7672721 Brock JH. Lactoferrin in human milk: its role in iron absorption and protection against enteric infection in the newborn. infant. Arch Dis Child. 1980;55:417–421. PMC1626933 7002055 Hyvonen P, Suojala L, Orro T, Haaranen J, Simola O, et al. Transgenic cows that produce recombinant human lactoferrin in milk are not protected from experimental Escherichia coli intramammary infection. Infect Immun. 2006;74:6206–6212. PMC1695535 16954396 Gong G, Dai Y, Fan B, Zhu H, Zhu S, et al. Birth of Calves Expressing the Enhanced Green Fluorescent Protein After Transfer of Fresh or Vitrified/Thawed Blastocysts Produced by Somatic Cell Nuclear Transfer. Mol Reprod Dev. 2004;69:278–288. 15349839 Rosenkrans JCF, First NL. Culture of bovine zygotes to the blastocyst stage: Effects of amino acids and vitamins. Theriogenology. 1991;35:266. Candiano G, Bruschi M, Musante L, Santucci L, Ghiggeri GM, et al. Blue silver: a very sensitive colloidal Coomassie G-250 staining for proteome analysis. Electrophoresis. 2004;25:1327–1333. 15174055 16139614 2006 01 26 2006 11 15 0093-691X 64 6 2005 Oct 01 Theriogenology Theriogenology Bovine oocytes vitrified by the open pulled straw method and used for somatic cell cloning supported development to term. 1381 1391 1381-91 The objective of the present study was to determine if oocytes vitrified by the open pulled straw (OPS) method could subsequently be used to produce somatic cell cloned cattle. Post-thaw survival rates were 77.0, 79.1, 97.2 and 97.5% for oocytes vitrified with EDFS30 (15% ethylene glycol, 15% dimethyl sulfoxide, ficoll and sucrose), EDFS40 (20% ethylene glycol, 20% dimethyl sulfoxide, ficoll and sucrose), EDFSF30 (15% ethylene glycol, 15% dimethyl sulfoxide, ficoll, sucrose and FBS) and EDFSF40 (20% ethylene glycol, 20% dimethyl sulfoxide, ficoll, sucrose and FBS), respectively. The parthenogenetic blastocyst rates of the vitrified-thawed oocytes activated with 5 microM of the calcium ionophore A23187 for 5 min and 2 microM of 6-dimethylaminopurin (6-DMAP) for 4h ranged from 10.3 to 23.0%, with the highest group not significantly differing from that of the controls (33.2%). In total, 722 vitrified-thawed oocytes were used as recipients for nuclear transfer, of which 343 fused (47.6%). Fifty-six (16.3%) of the reconstructed embryos reached the blastocyst stage after 7d of in vitro culture. Twenty-four blastocysts derived from vitrified-thawed oocytes were transferred to six Luxi yellow cattle recipients. Two recipients (33%) were diagnosed pregnant; one aborted 97 d after transfer, whereas the other delivered a cloned calf after 263 d. As a control, 28 synchronous Luxi yellow cattle recipients each received a single blastocyst produced using a fresh oocyte as a nuclear recipient; 10 recipients were diagnosed pregnant, of which 6 (21.4% of the original 28) delivered cloned calves. In conclusion, bovine oocytes vitrified by the OPS method and subsequently thawed supported development (to term) of somatic cell cloned embryos. Hou Yun-Peng YP College of Animal Science and Technology, China Agricultural University, Beijing 100094, China. Dai Yun-Ping YP Zhu Shi-En SE Zhu Hua-Bin HB Wu Tong-Yi TY Gong Guo-Chun GC Wang Hai-Ping HP Wang Li-Li LL Liu Ying Y Li Rong R Wan Rong R Li Ning N eng Journal Article Research Support, Non-U.S. Gov't 2005 04 25 United States Theriogenology 0421510 0093-691X IM Animals Animals, Newborn Blastocyst physiology Cattle embryology physiology Cloning, Organism Cryopreservation methods veterinary Female Fertilization in Vitro veterinary Nuclear Transfer Techniques Oocytes physiology Parthenogenesis Pregnancy Pregnancy Outcome 2004 7 25 2005 9 6 9 0 2006 1 27 9 0 2005 9 6 9 0 ppublish 16139614 10.1016/j.theriogenology.2005.03.012 S0093-691X(05)00083-X 15623160 2005 06 28 2019 11 09 1006-9305 47 5 2004 Oct Science in China. Series C, Life sciences Sci China C Life Sci Generation of cloned calves from different types of somatic cells. 470 476 470-6 Six types of bovine somatic cell lines, including a granulosa cell line of Chinese red-breed yellow cattle (YGR), a granulosa cell line of Holstein cow (HGR), two skin fibroblast cell lines of two adult Holstein cows respectively (AFB1 and AFB2), a skin fibroblast cell line (FFB) and an oviduct epithelial cell line (FOV) of a Holstein fetus, were established. Somatic cell nuclear transfer (SCNT) was carried out using these cells as nuclei donor, and a total of 12 healthy calves were cloned. The effects of different types of donor cells on developmental potential of bovine SCNT embryos were investigated. (i) There was no significant difference in development rates to the blastocyst stage for SCNT embryos from YGR and HGR (33.2% and 35.1%, respectively). Pregnancy rates of them were 33.3% and 30.2%, respectively; and birth rates were 16.7% and 11.6%, respectively. (ii) Development rates to the blastocyst stage for SCNT embryos from different individuals (AFB1 and AFB2) differed significantly (27.9% and 39.4%, respectively, P < 0.05). Pregnancy rates of them were 36.2% and 36.4%, respectively; and birth rates were 14.9 % and 27.3%, respectively. (iii) There was significant difference in development rates to the blastocyst stage for SCNT embryos from FFB and FOV of the same fetus (37.9% and 41.5%, respectively, P < 0.05). Pregnancy rates of them were 45.7% and 24.1%, respectively; and birth rates were 22.9% and 10.3%, respectively. Finally, developmental potential of bovine SCNT embryos from all four types of somatic cells from Holstein cows (HGR, AFB, FFB and FOV) were compared. For in vitro development stage, development rates to the blastocyst stage for SCNT embryos from HGR, AFB, FFB and FOV were 35.1%A, 29.4%B, 37.9%A and 41.5%c, respectively (pABC < 0.05); for in vivo development stage, pregnancy rates of them were 30.2%, 36.2%, 45.7% and 24.1%, respectively; and birth rates of them were 11.6%, 17.2%, 22.9% and 10.3% respectively. Gong Guochun G State Key Laboratory for Agrobiotechnology, China Agricultural University, Beijing 100094, China. Dai Yunping Y Zhu Huabing H Wang Haiping H Wang Lili L Li Rong R Wan Rong R Liu Ying Y Li Ning N eng Journal Article Research Support, Non-U.S. Gov't China Sci China C Life Sci 9611809 1006-9305 IM Animals Blastomeres Cattle Cell Line Cell Nucleus metabolism Cells, Cultured Cloning, Molecular Cloning, Organism methods Embryo Transfer Embryo, Mammalian cytology Female Fibroblasts metabolism Microsatellite Repeats Oocytes metabolism Ovary metabolism Pregnancy Pregnancy, Animal 2004 12 30 9 0 2005 6 29 9 0 2004 12 30 9 0 ppublish 15623160 10.1360/03yc0224 15379251 2004 12 14 2019 11 08 1006-9305 47 2 2004 Apr Science in China. Series C, Life sciences Sci China C Life Sci Production of transgenic blastocyst by nuclear transfer from different types of somatic cells in cattle. 183 189 183-9 The present study examined the effects of genetic manipulation to the donor cell and different types of transgenic donor cells on developmental potential of bovine nuclear transfer (NT) embryos. Four types of bovine somatic cells, including granulosa cells, fetal fibroblasts, fetal oviduct epithelial cells and fetal ovary epithelial cells, were transfected with a plasmid (pCE-EGFP-Ires-Neo-dNdB) containing the enhanced green fluorescent protein (EGFP) and neomycin-resistant (Neor) genes by electroporation. After 14 days selection with 800 microg/mL G418, transgenic cell lines from each type of somatic cells were obtained. Nontransgenic granulosa cells and all 4 types of transgenic somatic cells were used as nuclear donor to produce transgenic embryos by NT. There was no significant difference in development rates to the blastocyst stage for NT embryos from transgenic and nontransgenic granulosa cells (44.6% and 42.8%, respectively), and transfer of NT embryos derived from transgenic and nontransgenic granulosa cells to recipients resulted in similar pregnancy rates on day 90 (19% and 25%, respectively). The development rates to the blastocyst stage of NT embryos were significantly different among different types of transgenic donor cells (P<0.05). Blastocyst rates from fetal oviduct epithelial cell and granulosa cell (49.1% and 44.6%, respectively) were higher than those from fetal fibroblast (32.7%) and fetal ovary epithelial cell (22.5%). These results suggest that (i) genetic manipulation to donor cells has no negative effect on in vitro and early in vivo developmental competence of bovine NT embryos and (ii) granulosa and fetal oviduct epithelial cells can be used to produce transgenic bovine NT embryos more efficiently. In addition, GFP can be used to select transgenic NT embryos as a non-invasive selective marker. Gong Guochun G State Key Laboratory for Agrobiotechnology, China Agricultural University, Beijing 100094, China. Dai Yunping Y Fan Baoliang B Zhu Huabing H Wang Haiping H Wang Lili L Fang Changge C Wan Rong R Liu Ying Y Li Rong R Li Ning N eng Journal Article Research Support, Non-U.S. Gov't China Sci China C Life Sci 9611809 1006-9305 IM Animals Animals, Genetically Modified Blastocyst physiology Cattle Female Genes, Reporter Granulosa Cells cytology Nuclear Transfer Techniques Oocytes cytology physiology Restriction Mapping 2004 9 24 5 0 2004 12 16 9 0 2004 9 24 5 0 ppublish 15379251 10.1360/03yc0015 15349839 2005 03 14 2006 11 15 1040-452X 69 3 2004 Nov Molecular reproduction and development Mol Reprod Dev Birth of calves expressing the enhanced green fluorescent protein after transfer of fresh or vitrified/thawed blastocysts produced by somatic cell nuclear transfer. 278 288 278-88 The present study examined effects of genetic manipulation and serum starvation on in vitro developmental potential of bovine somatic cell nuclear transfer (SCNT) embryos and vitrification on in vivo developmental competence of transgenic SCNT blastocysts. Fetal oviduct epithelial cells (FOECs) were isolated from the oviduct of a Day 147 bovine fetus and transfected with a plasmid (pCE-EGFP-IRES-NEO) containing the enhanced green fluorescent protein (EGFP) and neomycin-resistant (Neor) genes. There were no significant differences (P > 0.05) in cleavage rates or development rates to the blastocyst stage for SCNT embryos derived from FOECs (72.5 and 47.8%, respectively) or transfected FOECs (TFOECs, 73.8 and 47.7%, respectively); nor from serum-fed (73.6 and 47.2%, respectively) or serum-starved (72.7 and 48.3%, respectively) cells. Seventeen of Day 7 GFP-embryos (eight fresh blastocysts and nine vitrified/thawed blastocysts ) were transferred to recipients with one embryo per recipient. Two (25%) recipients were confirmed pregnant at Day 60 in fresh blastocysts group, and three recipients (33%) were confirmed pregnant at Day 60 in vitrified/thawed blastocysts group. Two healthy calves (25%) were obtained from fresh blastocysts and one (11%) from vitrified/thawed blastocysts. Microsatellite analysis confirmed that the three clones were genetically identical to the donor cells. Moreover, PCR and Southern blot demonstrated integration of transgene in genomic DNA of all three cloned calves. Expression of GFP in skin biopsies isolated from transgenic cloned calves and fibroblasts derived from the skin biopsies revealed the activity of EGFP gene, and G418 resistance in vitro of these fibroblasts confirmed the activity of Neor gene. Our results show that genetic manipulation and serum starvation of donor cells (FOECs) do not affect in vitro developmental competence of bovine SCNT embryos, and vitrified transgenic SCNT blastocysts can develop to term successfully. Gong Guochun G State Key Laboratory for Agrobiotechnology, China Agricultural University, Beijing, China. Dai Yunping Y Fan Baoliang B Zhu Huabing H Zhu Shien S Wang Haiping H Wang Lili L Tang Bo B Li Rong R Wan Rong R Liu Ying Y Huang Yinhua Y Zhang Lei L Sun Xiuzhu X Li Ning N eng Journal Article Research Support, Non-U.S. Gov't United States Mol Reprod Dev 8903333 1040-452X IM Animals Animals, Genetically Modified Blastocyst metabolism Blotting, Southern Cattle Cloning, Organism Cryopreservation Genes, Reporter Microsatellite Repeats Nuclear Transfer Techniques Polymerase Chain Reaction 2004 9 7 5 0 2005 3 15 9 0 2004 9 7 5 0 ppublish 15349839 10.1002/mrd.20130 trying2...
Publications by Guochun Gong | LitMetric
Publications by authors named "Guochun Gong"
Nucleic Acids Res
June 2024
Article Synopsis
The study explores the link between a repeated genetic sequence (G4C2) in the C9orf72 gene and conditions like familial ALS and FTD. Researchers created a new mouse model with 96 copies of the G4C2 repeat to better understand how these repeats can become unstable over generations. Two main mechanisms were identified for repeat expansion: minor increases due to a mismatch repair pathway and larger expansions triggered by DNA breaks, with implications for understanding the genetic instability seen in human cases.
View Article and Find Full Text PDF
Increased blood levels of low-density lipoprotein cholesterol (LDL-C) and fibrinogen are independent risk factors for cardiovascular disease. We identified associations between an Amish-enriched missense variant (p.Asn352Ser) in a functional domain of beta-1,4-galactosyltransferase 1 () and 13.
View Article and Find Full Text PDF
CRISPR-based transcriptional activation is a powerful tool for functional gene interrogation; however, delivery difficulties have limited its applications in vivo. Here, we created a mouse model expressing all components of the CRISPR-Cas9 guide RNA-directed Synergistic Activation Mediator (SAM) from a single transcript that is capable of activating target genes in a tissue-specific manner. We optimized Lipid Nanoparticles and Adeno-Associated Virus guide RNA delivery approaches to achieve expression modulation of one or more genes in vivo.
View Article and Find Full Text PDF
The Adisintegrin and metalloprotease domain-containing (ADAM) family of proteins is involved in cell adhesion, migration, proteolysis, and signaling. Many ADAMs are required for reproduction; however, the role of Adam6 has remained largely unknown. In the course of humanizing the mouse immunoglobulin heavy chain (IgH) locus, we generated Adam6-deficient mice that demonstrate severe subfertility.
View Article and Find Full Text PDF
Article Synopsis
The hexanucleotide repeat expansion in the C9ORF72 gene is the leading cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD), but its functional impact and disease mechanism are still unclear. Research using a mouse model lacking C9orf72 revealed immune system alterations, such as increased myeloid cells, activated T cells, and elevated autoantibodies. The findings suggest that C9orf72 is important for maintaining immune balance and may indicate that deficiency in this gene isn't the main cause of ALS/FTD pathology.
View Article and Find Full Text PDF
In a survey of 20 knockout mouse lines designed to examine the biological functions of large intergenic non-coding RNAs (lincRNAs), we have found a variety of phenotypes, ranging from perinatal lethality to defects associated with premature aging and morphological and functional abnormalities in the lungs, skeleton, and muscle. Each mutant allele carried a lacZ reporter whose expression profile highlighted a wide spectrum of spatiotemporal and tissue-specific transcription patterns in embryos and adults that informed our phenotypic analyses and will serve as a guide for future investigations of these genes. Our study shows that lincRNAs are a new class of encoded molecules that, like proteins, serve essential and important functional roles in embryonic development, physiology, and homeostasis of a broad array of tissues and organs in mammals.
View Article and Find Full Text PDF
Transgenic Res
February 2015
Known examples of male to female sex reversal in mice are caused by either strain incompatibilities or mutations in genes required for male sex determination. The resultant XY females are often sterile or exhibit very poor fertility. We describe here embryonic stem (ES) cell growth conditions that promote the production of healthy, anatomically normal fertile and fecund female F0 generation mice completely derived from gene-targeted XY male ES cells.
View Article and Find Full Text PDF
Many studies are uncovering functional roles for long noncoding RNAs (lncRNAs), yet few have been tested for in vivo relevance through genetic ablation in animal models. To investigate the functional relevance of lncRNAs in various physiological conditions, we have developed a collection of 18 lncRNA knockout strains in which the locus is maintained transcriptionally active. Initial characterization revealed peri- and postnatal lethal phenotypes in three mutant strains (Fendrr, Peril, and Mdgt), the latter two exhibiting incomplete penetrance and growth defects in survivors.
View Article and Find Full Text PDF
Vet Med Int
September 2010
The aim of this study was to investigate the efficiency of in vitro embryo production in cattle utilizing sexed sperm from two bulls and oocytes recovered by OPU. Twenty donor animals were employed in eight OPU replicates: the first four OPU trials were conducted on animals without hormone treatment, and the last four were run on the same animals, following FSH subcutaneous and intramuscular administration. A higher rate of blastocyst development was recorded in stimulated, as compared to nonstimulated animals, (25.
View Article and Find Full Text PDF
Cell Reprogram
April 2010
The goals of the current study were to (1) improve culture conditions and (2) chemical passaging of bovine embryonic stem cell-like (bESC-like) cells. Specifically, the effects of human leukemia inhibitory factor (hLIF), two types of feeders, mouse embryonic fibroblast (MEF) and bovine embryonic fibroblast (BEF), as well as three different enzymatic treatments including Trypsin-EDTA, TrypLE, and Liberase Blendzymes 3 were investigated. The addition of hLIF at 1000 U/mL to the culture medium (41.
View Article and Find Full Text PDF
J Cell Physiol
September 2010
Treatment of common and debilitating degenerative cartilage diseases particularly osteoarthritis is a clinical challenge because of the limited capacity of the tissue for self-repair. Because of their unlimited capacity for self-renewal and ability to differentiate into multiple lineages, human embryonic stem cells (hESCs) are a potentially powerful tool for repair of cartilage defects. The primary objective of the present study was to develop culture systems and conditions that enable hESCs to directly and uniformly differentiate into the chondrogenic lineage without prior embryoid body (EB) formation, since the inherent cellular heterogeneity of EBs hinders obtaining homogeneous populations of chondrogenic cells that can be used for cartilage repair.
View Article and Find Full Text PDF
Large-scale production of biopharmaceuticals by current bioreactor techniques is limited by low transgenic efficiency and low expression of foreign proteins. In general, a bacterial artificial chromosome (BAC) harboring most regulatory elements is capable of overcoming the limitations, but transferring BAC into donor cells is difficult. We describe here the use of cattle mammary bioreactor to produce functional recombinant human lactoferrin (rhLF) by a novel procedure of transgenic cloning, which employs microinjection to generate transgenic somatic cells as donor cells.
View Article and Find Full Text PDF
Theriogenology
October 2005
The objective of the present study was to determine if oocytes vitrified by the open pulled straw (OPS) method could subsequently be used to produce somatic cell cloned cattle. Post-thaw survival rates were 77.0, 79.
View Article and Find Full Text PDF
Sci China C Life Sci
October 2004
Six types of bovine somatic cell lines, including a granulosa cell line of Chinese red-breed yellow cattle (YGR), a granulosa cell line of Holstein cow (HGR), two skin fibroblast cell lines of two adult Holstein cows respectively (AFB1 and AFB2), a skin fibroblast cell line (FFB) and an oviduct epithelial cell line (FOV) of a Holstein fetus, were established. Somatic cell nuclear transfer (SCNT) was carried out using these cells as nuclei donor, and a total of 12 healthy calves were cloned. The effects of different types of donor cells on developmental potential of bovine SCNT embryos were investigated.
View Article and Find Full Text PDF
Sci China C Life Sci
April 2004
The present study examined the effects of genetic manipulation to the donor cell and different types of transgenic donor cells on developmental potential of bovine nuclear transfer (NT) embryos. Four types of bovine somatic cells, including granulosa cells, fetal fibroblasts, fetal oviduct epithelial cells and fetal ovary epithelial cells, were transfected with a plasmid (pCE-EGFP-Ires-Neo-dNdB) containing the enhanced green fluorescent protein (EGFP) and neomycin-resistant (Neor) genes by electroporation. After 14 days selection with 800 microg/mL G418, transgenic cell lines from each type of somatic cells were obtained.
View Article and Find Full Text PDF
Mol Reprod Dev
November 2004
The present study examined effects of genetic manipulation and serum starvation on in vitro developmental potential of bovine somatic cell nuclear transfer (SCNT) embryos and vitrification on in vivo developmental competence of transgenic SCNT blastocysts. Fetal oviduct epithelial cells (FOECs) were isolated from the oviduct of a Day 147 bovine fetus and transfected with a plasmid (pCE-EGFP-IRES-NEO) containing the enhanced green fluorescent protein (EGFP) and neomycin-resistant (Neor) genes. There were no significant differences (P > 0.
View Article and Find Full Text PDF