Publications by authors named "Guochao Cui"

Transcription factor PpMYB5 promotes lignin synthesis by directly binding to the Pp4CL1/Pp4CL2 promoter and affecting their expression, which may be related to nectarine russeting formation. Nectarine russeting is usually considered to be a non-invasive physiological disease that usually occurs on late-maturing cultivars and seriously affects their appearance quality and commercial value. The cause of nectarine fruit rust is currently unknown.

View Article and Find Full Text PDF

Piercing/sucking insects such as green peach aphid (GPA) (Myzus persicae) cause direct damage by obtaining phloem nutrients and indirect damage by spreading plant viruses. To investigate the response of peach trees (Prunus persica) to aphids, the leaf transcriptome and metabolome of two genotypes with different sensitivities to GPA were studied. The gene expression of aphid-susceptible plants infested with aphids was similar to that of control plants, whereas the gene expression of aphid-resistant plants infested with aphids showed strong induced changes in gene expression compared with control plants.

View Article and Find Full Text PDF

Background: Peach (Prunus persica L.) is prone to chilling injury as exhibited by inhibition of the ethylene production, failure in softening, and the manifestation of internal browning. The basic leucine zipper (bZIP) transcription factors play an essential role in regulatory networks that control many processes associated with physiological, abiotic and biotic stress responses in fruits.

View Article and Find Full Text PDF
Article Synopsis
  • The peach weeping trait, which affects tree structure and light exposure, is controlled by a single recessive gene, identified through population studies.
  • Researchers mapped the gene to a specific 159 kb area on chromosome 3 and noted a 35 bp deletion distinguishing standard peach trees from weeping ones.
  • A new molecular marker linked to the weeping trait was established, aiding in selective breeding and allowing for early screening of hybrid offspring for improved peach cultivation.
View Article and Find Full Text PDF

Ethylene plays a critical role in peach (Prunus persica) fruit ripening; however, the molecular mechanism underlying ethylene-mediated aroma biosynthesis remains unclear. Here, we compared the difference in aroma-related volatiles and gene expression levels between melting-flesh (MF) and stony hard (SH) peach cultivars at S3, S4 I, S4 II, S4 III stages, and explored the relation between volatile biosynthesis related genes and ethylene response factor (ERF) genes. The concentration of fruity aromatic compounds such as lactones and terpenes increased significantly in MF peach during fruit ripening, while it was nearly undetectable in SH peach.

View Article and Find Full Text PDF

The green peach aphid (GPA), Myzus persicae, is a polyphagous, sap-sucking aphid and a vector of many plant viruses. In peach, Prunus persica, three individual dominant GPA resistance loci have been genetically defined (Rm1-3), but knowledge of the underlying genes is limited. In this study, we focused on the Rm3 locus.

View Article and Find Full Text PDF

Stony hard (SH) peach ( L. Batsch) fruit does not release ethylene and has very firm and crisp flesh at ripening, both on- and off-tree. Long-term cold storage can induce ethylene production and a serious risk of chilling injury in SH peach fruit; however, the regulatory mechanism underlying ethylene production in stony hard peach is relatively unclear.

View Article and Find Full Text PDF

The signaling pathways of both auxin and ethylene regulate peach fruit ripening via the Aux/IAA and ERF transcription factors, respectively. However, the molecular mechanisms that coordinate both auxin and ethylene signals during peach fruit ripening remain unclear. In this study, we show that PpIAA1 and PpERF4 act as key players in a positive feedback loop, and promote peach fruit ripening by directly binding to and enhancing the activity of target gene promoters.

View Article and Find Full Text PDF

The fruit skin pubescence of is an economically important characteristic and comprises the classification criteria. The mapping and identification of a complete linkage marker to the fruit skin trichome trait locus of peach fruit are critical for the molecular marker-assisted selection for peach/nectarine. In this study, the BC population was constructed from the parents "Zhongyou No.

View Article and Find Full Text PDF

Flower and fruit colors are important agronomic traits. To date, there is no forward genetic evidence that the glutathione S-transferase (GST) gene is responsible for the white flower color in peach (Prunus persica). In this study, genetic analysis indicated that the white-flower trait is monogenetic, is recessive to the non-white allele, and shows pleiotropic effects with non-white-flowered types.

View Article and Find Full Text PDF

Peach () is a typical climacteric fruit that produces ethylene rapidly during ripening, and its fruit softens quickly. Stony hard peach cultivars, however, do not produce large amounts of ethylene, and the fruit remains firm until fully ripe, thus differing from melting flesh peach cultivars. To identify the key proteins involved in peach fruit ripening, an antibody-based proteomic analysis was conducted.

View Article and Find Full Text PDF

Ethylene response factors (ERFs) are known to regulate fruit ripening. However, the ERF regulatory networks are not clear. In this study, we have shown that peach (Prunus persica) PpeERF2 regulates fruit ripening through suppressing the expression of two ABA biosynthesis genes (PpeNCED2, PpeNCED3) and a cell wall degradation gene (PpePG1).

View Article and Find Full Text PDF

The plant hormone ethylene regulates ripening in climacteric fruits. The phytohormone abscisic acid (ABA) affects ethylene biosynthesis, but whether ethylene influences ABA biosynthesis is unknown. To explore this possibility, we investigated the interactions between the ABA biosynthesis genes and the ethylene response transcription factor PpERF3 in peach fruit.

View Article and Find Full Text PDF

Background: The green peach aphid (GPA), Myzus persicae (Sülzer), is a widespread phloem-feeding insect that significantly influences the yield and visual quality of peach [Prunus persica (L.) Batsch]. Single dominant gene (Rm3)-based resistance provides effective management of this invasive pest, although little is known about the molecular responses of plants to GPA feeding.

View Article and Find Full Text PDF

High concentrations of indole-3-acetic acid (IAA) are required for climacteric ethylene biosynthesis to cause fruit softening in melting flesh peaches at the late ripening stage. By contrast, the fruits of stony hard peach cultivars do not soften and produce little ethylene due to the low IAA concentrations. To investigate the regulation of IAA accumulation during peach ripening [the transition from stage S3 to stage S4 III (climacteric)], a digital gene expression (DGE) analysis was performed.

View Article and Find Full Text PDF