The chemical synthesis of histones with homogeneous modifications is a powerful approach for quantitatively deciphering the functional crosstalk between different post-translational modifications (PTMs). In this study, we developed an expedient site-specific (poly)ubiquitylation strategy (CAEPL, Cysteine Aminoethylation coupled with Enzymatic Protein Ligation), which integrates the Cys-aminoethylation reaction with the process of ubiquitin-activating enzyme UBA1-assisted native chemical ligation. Using this strategy, we successfully prepared monoubiquitylated and K63-linked di- and tri-ubiquitylated linker histone H1.
View Article and Find Full Text PDFThe cancer-specific fusion oncoprotein SS18-SSX1 disturbs chromatin accessibility by hijacking the BAF complex from the promoters and enhancers to the Polycomb-repressed chromatin regions. This process relies on the selective recognition of H2AK119Ub nucleosomes by synovial sarcoma X breakpoint 1 (SSX1). However, the mechanism underlying the selective recognition of H2AK119Ub nucleosomes by SSX1 in the absence of ubiquitin (Ub)-binding capacity remains unknown.
View Article and Find Full Text PDFDynamic monitoring of intracellular ubiquitin (Ub) conjugates is instrumental to understanding the Ub regulatory machinery. Although many biochemical approaches have been developed to characterize protein ubiquitination, chemical tools capable of temporal resolution probing of ubiquitination events remain to be developed. Here, we report the development of the first cell-permeable and stimuli-responsive Ub probe and its application for the temporal resolution profiling of ubiquitinated substrates in live cells.
View Article and Find Full Text PDFMembrane-associated D-proteins are an important class of synthetic molecules needed for D-peptide drug discovery, but their chemical synthesis using canonical ligation methods such as native chemical ligation is often hampered by the poor solubility of their constituent peptide segments. Here, we describe a Backbone-Installed Split Intein-Assisted Ligation (BISIAL) method for the synthesis of these proteins, wherein the native L-forms of the N- and C-intein fragments of the unique consensus-fast (Cfa) (i.e.
View Article and Find Full Text PDFSite-selective conjugation chemistry has proven effective to synthesize homogenously ubiquitinated histones. Recently, a powerful strategy using 2-((2-chloroethyl) amino) ethane-1-thiol (CAET) as a bifunctional handle was developed to generate chemically stable ubiquitin chains without racemization and homodimerization. Herein, we extend this strategy to the expedient synthesis of ubiquitinated histones, exemplifying its utility to not only synthesize single-monoubiquitinated histones, but dual-monoubiquitinated histones as well.
View Article and Find Full Text PDFUnlabelled: ISG15 is a ubiquitin-like (Ubl) protein attached to substrate proteins by ISG15 conjugating enzymes whose dysregulation is implicated in a multitude of disease processes, but the probing of these enzymes remains to be accomplished. Here, we describe the development of a new activity-based probe ISG15-Dha (dehydroalanine) through protein semi-synthesis. cross-linking and cell lysate proteomic profiling experiments showed that this probe can sequentially capture ISG15 conjugating enzymes including E1 enzyme UBA7, E2 enzyme UBE2L6, E3 enzyme HERC5, the previously known ISG15 deconjugating enzyme (USP18), as well as some other enzymes (USP5 and USP14) which we additionally confirmed to impart deISGylation activity.
View Article and Find Full Text PDFChem Commun (Camb)
January 2023
Deubiquitinating enzyme (DUB) abnormalities are associated with many diseases. Previous attempts have been made to introduce various chemical groups such as alkynes, unsaturated olefins and alkyl halides to the C-terminus of ubiquitin (Ub) to capture the active-site cysteine residue in DUBs for structural and biochemical studies. Here, we find that a Ub C-terminal acyl azide can capture DUBs, thereby forming thioester bonds in buffers and cell lysates.
View Article and Find Full Text PDFUbiquitination regulates almost every life process of eukaryotes. The study of the ubiquitin (Ub) coupling or decoupling process and the interaction study of Ub-Ub binding protein have always been the central focus. However, such studies are challenging, owing to the transient nature of Ub-coupling enzymes and deubiquitinases in the reactions, as well as the difficulty in preparing large quantities of polyubiquitinated samples.
View Article and Find Full Text PDFThe chemical synthesis of homogeneously modified histones is a powerful approach to quantitatively decipher how post-translational modifications (PTMs) modulate epigenetic events. Herein, we describe the expedient syntheses of a selection of phosphorylated and ubiquitinated H2AX proteins in a strategy integrating expressed protein hydrazinolysis and auxiliary-mediated protein ligation. These modified H2AX proteins were then used to discover that although H2AXS139 phosphorylation can enhance the binding of the DNA damage repair factor 53BP1 to either an unmodified nucleosome or that bearing a single H2AXK15ub or H4K20me2 modification, it augments 53BP1's binding only weakly to nucleosomes bearing both H2AXK15ub and H4K20me2.
View Article and Find Full Text PDFUbiquitin (Ub)-like protein ISG15 (interferon-stimulated gene 15) regulates innate immunity and links with the evasion of host response by viruses such as SARS-CoV-2. Dissecting ISGylation pathways recently received increasing attention which can inform related disease interventions, but such studies necessitate the preparation and development of various ISG15 protein tools. Here, we find that the leader protease (Lb ) encoded by foot-and-mouth disease virus can promote ligation reactions between recombinant ISG15 and synthetic glycyl compounds, generating protein tools such as ISG15-propargylamide and ISG15-rhodamine110, which are needed for cellular proteomic studies of deISGylases, and the screening and evaluation of inhibitors against SARS-CoV-2 papain-like protease (PLpro).
View Article and Find Full Text PDFUbiquitination-dependent histone crosstalk plays critical roles in chromatin-associated processes and is highly associated with human diseases. Mechanism studies of the crosstalk have been of the central focus. Here our study on the crosstalk between H2BK34ub and Dot1L-catalyzed H3K79me suggests a novel mechanism of ubiquitination-induced nucleosome distortion to stimulate the activity of an enzyme.
View Article and Find Full Text PDFActivity-based E2 conjugating enzyme (E2)-ubiquitin (Ub) probes have recently emerged as effective tools for studying the molecular mechanism of E3 ligase (E3)-catalyzed ubiquitination. However, the preparation of existing activity-based E2-Ub probes depends on recombination technology and bioconjugation chemistry, limiting their structural diversity. Herein we describe an expedient total chemical synthesis of an E2 enzyme variant through a hydrazide-based native chemical ligation, which enabled the construction of a structurally new activity-based E2-Ub probe to covalently capture the catalytic site of Cys-dependent E3s.
View Article and Find Full Text PDFHistone ubiquitination affects the structure and function of nucleosomes. Here, we reported a one-pot synthesis of ubiquitinated histone analogues using 1,3-dibromoacetone (DBA) as the cross-linking reagent. The key step is that under the acidic borate buffer, the DBA linker can be efficiently installed to the Cys of the recombinant Ub mutant, followed by the coupling between the Ub-DBA with histones at physiological pH.
View Article and Find Full Text PDFUbiquitin chains with distinct topologies play essential roles in eukaryotic cells. Recently, it was discovered that multiple ubiquitin units can be ligated to more than one lysine residue in the same ubiquitin to form diverse branched ubiquitin chains. Although there is increasing evidence implicating these branched chains in a plethora of biological functions, few mechanistic details have been elucidated.
View Article and Find Full Text PDFUbiquitin (Ub)-based fluorescent reagents are crucial to explore the activity of deubiquitinases (DUBs). Ub-Rho110-G is one of the preferred tools, whereas the current synthetic route is time-consuming. Here, we report a new semisynthetic strategy to produce Ub-Rho110-G through direct aminolysis of Boc-protected Ub-Mesna using bisglycyl-rhodamine 110.
View Article and Find Full Text PDFThe development of powerful and general methods to acquire ubiquitin (Ub) chains has prompted the deciphering of Ub-mediated processes. Herein, the cysteine-aminoethylation assisted chemical ubiquitination (CAACU) strategy is extended and improved to enable the efficient semi-synthesis of atypical Ub chain analogues and Ub-based probes. Combining the Cys aminoethylation and the auxiliary-mediated protein ligation, several linkage- and length-defined atypical Ub chains including di-Ubs, K27C-linked tri-Ub, K11/K48C-branched tri-Ub, and even the SUMOlated Ub are successfully prepared from recombinantly expressed starting materials at about a 9-20 mg L expression level.
View Article and Find Full Text PDFHistone ubiquitination affects the structure and function of nucleosomes through tightly regulated dynamic reversible processes. The efficient preparation of ubiquitinated histones and their analogs is important for biochemical and biophysical studies on histone ubiquitination. Here, we report the CAACU (cysteine-aminoethylation assisted chemical ubiquitination) strategy for the efficient synthesis of ubiquitinated histone analogs.
View Article and Find Full Text PDFBioorthogonal reactions have emerged as valuable tools for site-specific protein labeling and modification in vitro and in vivo. Hydrazone and oxime ligation has recently attracted considerable attention for wide applications in the conjugation of biomolecules. However, this kind of reaction has suffered from slow kinetics under physiological conditions and toxicity or complications of the reaction system due to catalysts.
View Article and Find Full Text PDF