Minimum error entropy with fiducial points (MEEF) has gained significant attention due to its excellent performance in mitigating the adverse effects of non-Gaussian noise in the fields of machine learning and signal processing. However, the original MEEF algorithm suffers from high computational complexity due to the double summation of error samples. The quantized MEEF (QMEEF), proposed by Zheng et al.
View Article and Find Full Text PDFAugmented IIR filter adaptive algorithms have been considered in many studies, which are suitable for proper and improper complex-valued signals. However, lots of augmented IIR filter adaptive algorithms are developed under the mean square error (MSE) criterion. It is an ideal optimality criterion under Gaussian noises but fails to model the behavior of non-Gaussian noise found in practice.
View Article and Find Full Text PDFThe complex correntropy has been successfully applied to complex domain adaptive filtering, and the corresponding maximum complex correntropy criterion (MCCC) algorithm has been proved to be robust to non-Gaussian noises. However, the kernel function of the complex correntropy is usually limited to a Gaussian function whose center is zero. In order to improve the performance of MCCC in a non-zero mean noise environment, we firstly define a complex correntropy with variable center and provide its probability explanation.
View Article and Find Full Text PDFThe Hammerstein adaptive filter using maximum correntropy criterion (MCC) has been shown to be more robust to outliers than the ones using the traditional mean square error (MSE) criterion. As there is no report on the robust Hammerstein adaptive filters in the complex domain, in this paper, we develop the robust Hammerstein adaptive filter under MCC to the complex domain, and propose the Hammerstein maximum complex correntropy criterion (HMCCC) algorithm. Thus, the new Hammerstein adaptive filter can be used to directly handle the complex-valued data.
View Article and Find Full Text PDFThe maximum complex correntropy criterion (MCCC) has been extended to complex domain for dealing with complex-valued data in the presence of impulsive noise. Compared with the correntropy based loss, a kernel risk-sensitive loss (KRSL) defined in kernel space has demonstrated a superior performance surface in the complex domain. However, there is no report regarding the recursive KRSL algorithm in the complex domain.
View Article and Find Full Text PDFIndependent component analysis (ICA) methods are widely applied to modern digital signal processing. The complex-valued FastICA algorithms are one type of the most significant methods. However, the complex ICA model usually omits the noise.
View Article and Find Full Text PDF