Hydrogen production by electrocatalytic water splitting is considered to be an effective and environmental method, and the design of an electrocatalyst with high efficiency, low cost, and multifunction is of great importance. Herein, we developed a crystalline NiFe phosphide (NiFeP)/amorphous P-doped FeOOH (P-FeOOH) heterostructure (defined as P-NiFeOH) as a high-efficiency multifunctional electrocatalyst for water electrolysis. The NiFeP nanocrystals provide remarkable electronic conductivity and plenty of active sites, the amorphous P-FeOOH improves the adsorption energy of oxygen-containing species, and the crystalline/amorphous heterostructure with superhydrophilic and superaerophobic surface generates synergistic effects, providing plentiful active sites and efficient charge/mass transfer.
View Article and Find Full Text PDFThe conventional hydrogen evolution from water electrolysis is severely impeded by the sluggish kinetics of oxygen evolution reaction (OER). In this work, an integrated electrolysis system of replacing the anodic OER with a thermodynamically favorable ethanol oxidation reaction (EOR) has been developed by using PdSbBi/C as an electrocatalyst. To maximize the EOR performance, the composition of PdSbBi nanoparticles is tuned by varying the ratio of Sb and Bi precursors.
View Article and Find Full Text PDF