Publications by authors named "GuoQiang Zheng"

polysaccharide (CPP) and rare element selenium (Se) have been proved to exert various biological activities, and our previous study demonstrated that selenium nanoparticles modified with CPP (CPP-SeNPs) possessed significantly enhanced tumor cytotoxicity in vitro. This study aimed to investigated the inhibitory effects of CPP-SeNPs complex on H22 solid tumors via immune enhancement. In this study, the H22 tumor-bearing mice model was constructed, and the potential mechanisms of CPP-SeNPs antitumor effects were further explored by evaluating cytokines expression levels, immune cells activities and tumor cells apoptotic indicators in each group.

View Article and Find Full Text PDF

Heat shock transcription factors (Hsfs) play important roles in plant developmental regulations and various abiotic stress responses. However, their evolutionary mechanism of freezing tolerance remains poorly understood. In our previous transcriptomics study based on DNA methylation sequencing, the BnaHsfA2 was found to be significantly accumulated in winter rapeseed (Brassica rapa L.

View Article and Find Full Text PDF

Optical remote sensing images have a wide range of applications but are often affected by cloud cover, which interferes with subsequent analysis. Therefore, cloud removal has become indispensable in remote sensing data processing. The Tibetan Plateau, as a sensitive region to climate change, plays a crucial role in the East Asian water cycle and regional climate due to its snow cover.

View Article and Find Full Text PDF

Winter rapeseed is a high-oil crop that exhibits significant sensitivity to low temperatures, leading to a substantial reduction in production. Hence, it is of great significance to elucidate the genomic genetic mechanism of strong freezing-resistant winter rapeseed to improve their freezing-resistant traits. In this study, global transcriptome expression profiles of the freezing-resistant cultivar NTS57 (NS) under freezing stress were obtained for the years 2015, 2016, and 2017 by RNA sequencing (RNA-seq).

View Article and Find Full Text PDF
Article Synopsis
  • * A polysaccharide, named S. luteus acid-extracted polysaccharide (SLAP), was prepared and its structural characteristics were analyzed. It has a unique composition that enhances gut health.
  • * In tests with tumor-bearing mice, SLAP improved the activity of important immune cells and reduced tumor growth by 61.14%, suggesting its potential as an immunomodulatory agent for food and medicine applications.
View Article and Find Full Text PDF

With the rapid development of information technology (e.g., Internet of Things (IoT) and artificial intelligence (AI)), piezoelectric sensor (i.

View Article and Find Full Text PDF

Salvia miltiorrhiza ethanol-extracted polysaccharide (SMEP) and thymopentin (TP5) have been proved with strong immunomodulatory activity, and T cells subsets play pivotal roles in the inhibition of solid tumors growth. In the present study, the structure of SMEP was further identified via methylation and nuclear magnetic resonance spectra, and the immunomodulatory activity in combination with TP5 was investigated via evaluating T cell subsets spatial distributions in tumor-bearing mice, finally the cellular status of solid tumor cells was analyzed. The results revealed that SMEP was a neutral heteropolysaccharide using (1 → 4)-α-D-Glcp and (2 → 1)-β-D-Fruf as the main chain, along with branched chains of (1 → 6)-α-D-Galp.

View Article and Find Full Text PDF

Currently, the widely used active form of plant elicitor peptide 1 (PEP1) from is composed of 23 amino acids, hereafter AtPEP1, serving as an immune elicitor. The relatively less conserved N-terminal region in AtPEP family indicates that the amino acids in this region may be unrelated to the function and activity of AtPEP peptides. Consequently, we conducted an investigation to determine the necessity of the nonconserved amino acids in AtPEP1 peptide for its functional properties.

View Article and Find Full Text PDF

Passive radiative cooling (PRC) that realizes thermal management without consuming any energy has attracted increasing attention. Unfortunately, polymer fibers with radiative cooling function fabricated a facile, continuous, large-scale and eco-friendly method have been scarcely reported. Herein, polyethylene fibers containing directional microchannels (PFCDM) are facilely fabricated melt extrusion and water leaching.

View Article and Find Full Text PDF

The immune functions of the body are intricately intertwined with the onset and advancement of tumors, and immunotherapy mediated by bioactive compounds has exhibited initial effectiveness in overcoming chemotherapy resistance and inhibiting tumor growth. However, the comprehensive interpretation of the roles played by immunologic components in the process of combating tumors remains to be elucidated. In this study, the glucofructan (CPG) prepared in our previous research was employed as an immunopotentiator, and the impacts of CPG on both the humoral and cellular immunity of S180 tumor-bearing mice were investigated.

View Article and Find Full Text PDF

Background: Malaria is a global public health concern, mainly occurring in sub-Saharan Africa. Children infected with malaria are more likely to develop severe disease, which can be fatal. During COVID-19 in 2020, diagnosing and treating malaria became difficult.

View Article and Find Full Text PDF

Electronic skin (e-skin) is one of the most important components of future wearable electronic devices, whose sensing performances can be improved by constructing micropatterns on its sensitive layer. However, in traditional e-skins it is difficult to balance sensitivity and the pressure sensing range, and most micropatterns are generally prepared by some complex technologies. Herein, mushroom-mimetic micropatterns with 3D hierarchical architecture and an interdigital electrode are facilely prepared.

View Article and Find Full Text PDF

The outbreak of the coronavirus disease 2019 (COVID-19) epidemic has resulted in large threats and damage to society and the economy. In this study, we evaluate and verify the comprehensive resilience and spatiotemporal impact of the COVID-19 epidemic from January to June 2022 in mainland China based on multisource data. First, we adopt a combination of the mandatory determination method and the coefficient of variation method to determine the weight of the urban resilience assessment index.

View Article and Find Full Text PDF

In recent years, piezoelectric polymer sensors are used in energy harvesting and self-powered sensing due to their flexibility, low density, and high piezoelectric constant, and their performances may be improved through a careful architectural design. Herein, we reported a facile strategy for fabricating core-sheath piezoelectric fiber (C-PEF) by directly electrospinning poly(vinylidene fluoride) (PVDF) onto the stainless steel wires. Such C-PEF can well respond to bending deformation with different degrees, and therefore it can be assembled into a piezoelectric bending sensor for airflow speed sensing.

View Article and Find Full Text PDF

BrAFP1(antifreeze protein in winter turnip rape) effectively limits recrystallization and growth of ice crystals. The BrAFP1 expression level determines whether the freezing-induced damage to winter turnip rape plants is avoided. This study analyzed the activity of the BrAFP1 promoters of several varieties at various cold tolerance levels.

View Article and Find Full Text PDF

Smart tactile sensing materials have excellent development prospects, including wearable health-monitoring equipment and energy collection. Hydrogels have received extensive attention in tactile sensing owing to their transparency and high elasticity. In this study, highly crosslinked hydrogels are fabricated by chemically crosslinking polyacrylamide with lithium magnesium silicate and decorated with carbon quantum dots.

View Article and Find Full Text PDF

Winter rapeseed is the largest source of edible oil in China and is especially sensitive to low temperature, which causes tremendous agricultural yield reduction and economic losses. It is still unclear how DNA methylation regulates the formation of freezing tolerance in winter rapeseed under freezing stress. Therefore, in this study, the whole-genome DNA methylation map and transcriptome expression profiles of freezing-resistant cultivar NTS57 (NS) under freezing stress were obtained.

View Article and Find Full Text PDF

Background: Cytosine methylation, the main type of DNA methylation, regulates gene expression in plant response to environmental stress. The winter rapeseed has high economic and ecological value in China's Northwest, but the DNA methylation pattern of winter rapeseed during freezing stress remains unclear.

Result: This study integrated the methylome and transcriptome to explore the genome-scale DNA methylation pattern and its regulated pathway of winter rapeseed, using freezing-sensitive (NF) and freezing-resistant (NS) cultivars.

View Article and Find Full Text PDF

Flowering at the proper time is an important part of acclimation to the ambient environment and season and maximizes the plant yield. To reveal the genetic architecture and molecular regulation of flowering time in oilseed rape (), we performed an RNA-seq analysis of the two parents after vernalization at low temperature and combined this with quantitative trait loci (QTL) mapping in an F population. A genetic linkage map that included 1,017 markers merged into 268 bins and covered 793.

View Article and Find Full Text PDF

Recently, soft actuators have attracted considerable interest owing to their biomimetic performance. Unfortunately, it remains a great challenge to fabricate multi-stimuli-responsive soft actuators by a facile but low-cost method. Herein, a thermoplastic film with bilayered architecture was designed and fabricated by a one-step method.

View Article and Find Full Text PDF

The fabrication of self-powered pressure sensors based on piezoelectric materials requires flexible piezoelectric generators produced with a continuous, large-scale, and environmentally friendly approach. In this study, continuous poly(vinylidene fluoride) (PVDF) sheets with a higher β-phase content were facilely fabricated by the melt-extrusion-calendering technique and a PVDF-based piezoelectric generator (PEG) was further assembled. Such a PEG exhibits a remarkable piezoelectric output performance.

View Article and Find Full Text PDF

With the rapid development of wearable electronics, a multifunctional and flexible strain sensor is urgently required. Even though enormous progress has been achieved in designing high-performance strain sensors, the conflict between high sensitivity and a large workable range still restricts their further advance. Herein, a "point to point" conductive network is proposed to design and fabricate a carbon black/polyaniline nanoparticles/thermoplastic polyurethane film (CPUF).

View Article and Find Full Text PDF

Wearable smart devices should be flexible and functional to imitate the warmth and sensing functions of human skin or animal fur. Despite the recent great progress in wearable smart devices, it is still challenging to achieve the required multi-functionality. Here, stretchable hollow-porous fibers with self-warming ability are designed, and the properties of electrical heating, strain sensing, temperature sensing and pressure sensing are achieved.

View Article and Find Full Text PDF

Smart skin is highly desired to be ultrasensitive and self-powered as the medium of artificial intelligence. Here, an ultrasensitive self-powered mechanoluminescence smart skin (SPMSS) inspired by the luminescence mechanism of cephalopod skin and the ultrasensitive response of spider-slit-organ is developed. Benefitting from the unique strain-dependent microcrack structure design based on Ti C T (MXene)/carbon nanotube synergistic interaction, SPMSS possesses excellent strain sensing performances including ultralow detection limit (0.

View Article and Find Full Text PDF

Electronic skins (e-skins) have attracted great attention for their applications in disease diagnostics, soft robots, and human-machine interaction. The integration of high sensitivity, low detection limit, large stretchability, and multiple stimulus response capacity into a single e-skin remains an enormous challenge. Herein, inspired by the structure of nacre, an ultra-stretchable and multifunctional e-skin with tunable strain detection range based on nacre-mimetic multi-layered silver nanowires /reduced graphene oxide /thermoplastic polyurethane mats is fabricated.

View Article and Find Full Text PDF