Publications by authors named "GuoQiang Lo"

Article Synopsis
  • Implantable silicon neural probes have been developed with nanophotonic grating emitters that focus light for precise optogenetic neuron targeting.
  • Gratings were specifically designed for wavelengths of 488 and 594 nm to excite Channelrhodopsin-2 and Chrimson, key optogenetic actuators.
  • This is the first documented instance of creating focused light spots at the scale of neuron cell bodies within brain tissue using these neural probes.
View Article and Find Full Text PDF

Significance: Light-sheet fluorescence microscopy is widely used for high-speed, high-contrast, volumetric imaging. Application of this technique to brain imaging in non-transparent organisms has been limited by the geometric constraints of conventional light-sheet microscopes, which require orthogonal fluorescence excitation and collection objectives. We have recently demonstrated implantable photonic neural probes that emit addressable light sheets at depth in brain tissue, miniaturizing the excitation optics.

View Article and Find Full Text PDF

Advances in chip-scale photonic-electronic integration are enabling a new generation of foundry-manufacturable implantable silicon neural probes incorporating nanophotonic waveguides and microelectrodes for optogenetic stimulation and electrophysiological recording in neuroscience research. Further extending neural probe functionalities with integrated microfluidics is a direct approach to achieve neurochemical injection and sampling capabilities. In this work, we use two-photon polymerization 3D printing to integrate microfluidic channels onto photonic neural probes, which include silicon nitride nanophotonic waveguides and grating emitters.

View Article and Find Full Text PDF

In this Letter, we report a bridge-connected three-electrode germanium-on-silicon (Ge-on-Si) avalanche photodiode (APD) array compatible with the complementary metal-oxide semiconductor (CMOS) process. In addition to the two electrodes on the Si substrate, a third electrode is designed for Ge. A single three-electrode APD was tested and analyzed.

View Article and Find Full Text PDF

Laser beam scanning is central to many applications, including displays, microscopy, three-dimensional mapping, and quantum information. Reducing the scanners to microchip form factors has spurred the development of very-large-scale photonic integrated circuits of optical phased arrays and focal plane switched arrays. An outstanding challenge remains to simultaneously achieve a compact footprint, broad wavelength operation, and low power consumption.

View Article and Find Full Text PDF

Bessel beam featured with self-healing is essential to the optical sensing applications in the obstacle scattering environment. Integrated on-chip generation of the Bessel beam outperforms the conventional structure by small size, robustness, and alignment-free scheme. However, the maximum propagation distance (Z) provided by the existing approaches cannot support long-range sensing, and thus, it restricts its potential applications.

View Article and Find Full Text PDF

The angular displacement sensor is a digital angular displacement measurement device that integrates optics, mechanics, and electronics. It has important applications in communication, servo control, aerospace, and other fields. Although conventional angular displacement sensors can achieve extremely high measurement accuracy and resolution, they cannot be integrated because complex signal processing circuitry is required at the photoelectric receiver, which limits their suitability for robotics and automotive applications.

View Article and Find Full Text PDF

Conventional thermo-optic devices-which can be broadly categorized to that with and without a thermal isolation trench-typically come with a tradeoff between thermal tuning efficiency and tuning speed. Here, we propose a method that allows us to directly define the tradeoff using a specially designed thermo-optic phase shifter with an interleaved isolation trench. With the design, the tuning efficiency and speed can be precisely tailored simply by controlling the duty ratio (suspended length over total heater length) of the suspended design.

View Article and Find Full Text PDF

We demonstrate power-efficient, thermo-optic, silicon nitride waveguide phase shifters for blue, green, and yellow wavelengths. The phase shifters operated with low power consumption due to a suspended structure and multi-pass waveguide design. The devices were fabricated on 200-mm silicon wafers using deep ultraviolet lithography as part of an active visible-light integrated photonics platform.

View Article and Find Full Text PDF

Silicon based optoelectronic integrated optical phased array is attractive owing to large-dense integration, large scanning range and CMOS compatibility. In this paper, we design and fabricate a SiN-on-SOI two-dimensional optical phased array chip. We demonstrate a two-dimensional scanning range of 96°×14.

View Article and Find Full Text PDF

The optical power handling of an OPA scanning beam determines its targeted detection distance. So far, a limited number of investigations have been conducted on the restriction of the beam power. To the best of our knowledge, we for the first time in this paper explore the ability of the silicon photonics based OPA circuit for the high power application.

View Article and Find Full Text PDF

Two novel waveguide gratings for optical phased array transmitters are investigated. By offsetting the grating structures along the waveguide on the upper and lower surfaces of the silicon nitride (SiN) waveguide, the dual-level chain and dual-level fishbone structures can achieve 95% of unidirectional radiation with a single SiN layer by design. With apodized perturbation along the gratings, both structures can achieve uniform radiation without compromising the unidirectional radiation performance.

View Article and Find Full Text PDF

To address the problem of traditional surface illuminated detectors being of low responsivity, this work proposes a large-size interdigitated "finger-type" germanium-on-silicon (Ge-on-Si) photodetector (PD) based on the surface illumination approach. For 1550 nm light with a surface incident power of -20 dBm at room temperature, the best responsivity of the PD achieved is ∼0.64 A/W at 0.

View Article and Find Full Text PDF

We present an experimental and theoretical physical random bit (PRB) generator using the mesoscopic chaos from a photonic-crystal optomechanical microcavity with a size of ∼10µm and very low operating intracavity energy of ∼60 Femto-Joule that was fabricated with CMOS compatible processes. Moreover, two kinds of PRB generation were proposed with rates over gigabits per second (Gbps). The randomness of the large PRB strings was further verified using the NIST Special Publication 800-22.

View Article and Find Full Text PDF

We present passive, visible light silicon nitride waveguides fabricated on ≈ 100 µm thick 200 mm silicon wafers using deep ultraviolet lithography. The best-case propagation losses of single-mode waveguides were ≤ 2.8 dB/cm and ≤ 1.

View Article and Find Full Text PDF

Aluminum nitride on insulator (AlNOI) photonics platform has great potential for mid-infrared applications thanks to the large transparency window, piezoelectric property, and second-order nonlinearity of AlN. However, the deployment of AlNOI platform might be hindered by the high propagation loss. We perform thermal annealing study and demonstrate significant loss improvement in the mid-infrared AlNOI photonics platform.

View Article and Find Full Text PDF

We report on the design, fabrication and testing of three types of coupling structures for hybrid chalcogenide glass GeSbS-Silicon (GeSbS-Si) photonic integrated circuit platforms. The first type is a fully etched GeSbS grating coupler defined directly in the GeSbS film. Coupling losses of 5.

View Article and Find Full Text PDF

We report an aluminum nitride on insulator platform for mid-infrared (MIR) photonics applications beyond 3 μm. Propagation loss and bending loss are studied, while functional devices such as directional couplers, multimode interferometers, and add/drop filters are demonstrated with high performance. The complementary metal-oxide-semiconductor-compatible aluminum nitride offers advantages ranging from a large transparency window, high thermal and chemical resistance, to piezoelectric tunability and three-dimensional integration capability.

View Article and Find Full Text PDF

A grating coupler is an essential building block for compact and flexible photonics integration. In order to meet the increasing demand of mid-infrared (MIR) integrated photonics for sensitive chemical/gas sensing, we report a silicon-on-insulator (SOI) based MIR subwavelength grating coupler (SWGC) operating in the 3.7 μm wavelength range.

View Article and Find Full Text PDF

In this paper, we report a compact wavelength-flattened directional coupler (WFDC) based chemical sensor featuring an incorporated subwavelength grating (SWG) structure for the mid-infrared (MIR). By incorporating a SWG structure into directional coupler (DC), the dispersion in DC can be engineered to allow broadband operation which is advantageous to extract spectroscopic information for MIR sensing analysis. Meanwhile, the Bragg reflection introduced by the SWG structure produces a sharp trough at the Bragg wavelength.

View Article and Find Full Text PDF

We experimentally investigate an optical link relying on silicon photonics transmitter and receiver components as well as a single section semiconductor mode-locked laser as a light source and a semiconductor optical amplifier for signal amplification. A transmitter based on a silicon photonics resonant ring modulator, an external single section mode-locked laser and an external semiconductor optical amplifier operated together with a standard receiver reliably supports 14 Gbps on-off keying signaling with a signal quality factor better than 7 for 8 consecutive comb lines, as well as 25 Gbps signaling with a signal quality factor better than 7 for one isolated comb line, both without forward error correction. Resonant ring modulators and Germanium waveguide photodetectors are further hybridly integrated with chip scale driver and receiver electronics, and their co-operability tested.

View Article and Find Full Text PDF

Optical solitons-stable waves balancing delicately between nonlinearities and dispersive effects-have advanced the field of ultrafast optics and dynamics, with contributions spanning from supercontinuum generation to soliton fission, optical event horizons, Hawking radiation and optical rogue waves, among others. Here, we investigate picojoule soliton dynamics in silicon slow-light, photonic-bandgap waveguides under the influence of Drude-modeled, free-carrier-induced nonlinear effects. Using real-time and single-shot amplified dispersive Fourier transform spectroscopy simultaneously with high-fidelity cross-correlation frequency resolved optical gating at femtojoule sensitivity and femtosecond resolution, we examine the soliton stability limits, the soliton dynamics including free-carrier quartic slow-light scaling and acceleration, and the Drude electron-hole plasma-induced perturbations in the Cherenkov radiation and modulation instability.

View Article and Find Full Text PDF

Chaos has revolutionized the field of nonlinear science and stimulated foundational studies from neural networks, extreme event statistics, to physics of electron transport. Recent studies in cavity optomechanics provide a new platform to uncover quintessential architectures of chaos generation and the underlying physics. Here, we report the generation of dynamical chaos in silicon-based monolithic optomechanical oscillators, enabled by the strong and coupled nonlinearities of two-photon absorption induced Drude electron-hole plasma.

View Article and Find Full Text PDF

We experimentally realize a compact wideband polarization splitter and rotator (PSR) with CMOS compatibility. The fabricated PSR is then tested by utilizing a fabrication-tolerant TE-pass on-chip polarizer we propose to practically solve the issue of accurately aligning the polarizations in fiber and modes on chip. Both of these polarization handling devices take the advantage of bend structure that confines TE mode better than TM mode.

View Article and Find Full Text PDF

We propose a compact highly-efficient CMOS-compatible polarization splitter and rotator (PSR) with a wide bandwidth covering the whole O-band. It benefits from the different confinement capability of TE and TM modes in bend structure. This bend structure helps shorten the PSR and maintain high efficiency, achieving the bending, polarization splitting, rotating of light beam at the same time.

View Article and Find Full Text PDF