Publications by authors named "GuoHe Huang"

Waste printed circuit boards (WPCBs) are a significant component of electronic waste (e-waste) and are among the fastest-generating waste flows. The potentially negative impacts caused by e-waste on the environment and human health pose an increasingly apparent threat to people's everyday lives and well-being. The nonmetallic fraction (predominantly carbon) of WPCBs is characterized by heavy weight, low resource value, and complex composition, and these characteristics significantly restrict the recycling of the WPCBs to achieve a circular economy.

View Article and Find Full Text PDF

Large hydropower projects (LHPs) can generate significant direct socio-economic and environmental (SEE) impacts, which may radiate and accumulate gradually through the supply/consumption chains over different development periods. Therefore, a dynamic hydroengineering equilibrium analysis (DHEA) model is developed in this study to comprehensively quantify the cumulative indirect SEE impacts of LHPs during their construction and long-term operation period. The proposed DHEA model will be applied initially to the Baihetan hydropower project (BHT), the second-largest LHP in the world, which recently commenced operation.

View Article and Find Full Text PDF
Article Synopsis
  • The study introduces a new stochastic bi-level programming model (SB-WSTM) to identify effective strategies for water-saving and trading in response to water scarcity conditions.
  • It explores the relationship between socio-economic factors and water resources, emphasizing the role of government subsidies and the implementation of various water-saving technologies like micro-irrigation.
  • The model is applied to the Dagu River watershed in China, revealing that constructing micro-irrigation systems and implementing a 50% subsidy with 70% efficient irrigation area are optimal strategies for improving water resource management.
View Article and Find Full Text PDF

Recently, cellular senescence-induced unstable carotid plaques have gained increasing attention. In this study, we utilized bioinformatics and machine learning methods to investigate the correlation between cellular senescence and the pathological mechanisms of unstable carotid plaques. Our aim was to elucidate the causes of unstable carotid plaque progression and identify new therapeutic strategies.

View Article and Find Full Text PDF

Coal ashes in Canada have gained attention as a potential source for recovering rare earth elements (REE) from industrial waste. However, the complex chemical properties of coal ashes have made it difficult to determine the desirability, feasibility, and viability of REE recovery. To address this issue, this study systematically investigated distribution and structural information, speciation and chemical-binding state, and purity and extraction capacity of REE in multiple Canadian coal ashes (i.

View Article and Find Full Text PDF

Despite heightened awareness of plastic contamination, a comprehensive understanding of the ecotoxicity of plastic leachates remains challenging due to discrepancies in previous findings and complexities in the effects of myriad factors. Herein, we proposed a multi-factor multi-effect plastic-leachate ecotoxicology meta-analysis approach (PLEM) to elucidate the ecotoxicity of plastic leachates on aquatic plants. To distinguish the leachate toxicity from the general effects of leachates and plastic particles, the previous studies on the effects of leachate stricto sensu (i.

View Article and Find Full Text PDF

The ongoing water crisis poses significant threats to the socioeconomic sustainability and ecological security of arid and semi-arid river basins. Achieving Sustainable Development Goals (SDGs) within a complex socio-ecological nexus requires effective and balanced resource management. However, due to the intricate interactions between human societies and environmental systems, the tradeoffs and synergies of different SDGs remain unclear, posing a substantial challenge for collaborative management of natural resources.

View Article and Find Full Text PDF

Limited data exist on the interactions between nanoplastics (NPs) and co-contaminants under diverse environmental conditions. Herein, a factorial composite toxicity analysis approach (FCTA) was developed to analyze the time-dependent composite effects of NPs (0 ∼ 60 mg/L), copper (Cu, 0.2 ∼ 6 mg/L) and phenanthrene (PHE, 0.

View Article and Find Full Text PDF

The alarming depletion of global inland lakes in recent decades makes it essential to predict water inflow from rivers to lakes (WIRL) trend and unveil the dominant influencing driver, particularly in the context of climate change. The raw time series data contains multiple components (i.e.

View Article and Find Full Text PDF

In this study, a conjunctive water management model based on interval stochastic bi-level programming method (CM-ISBP) is proposed for planning water trading program as well as quantifying mutual effects of water trading and systematic water saving. CM-ISBP incorporates water resources assessment with soil and water assessment tool (SWAT), systematic water-saving simulation combined with water trading, and interval stochastic bi-level programming (ISBP) within a general framework. Systematic water saving involves irrigation water-saving technologies (sprinkler irrigation, micro-irrigation, low-pressure pipe irrigation), enterprise water-saving potential and water-saving subsidy.

View Article and Find Full Text PDF

Soil salinization is a major environmental hazard that limits land availability. Human-induced salt pollutants (HISPs) are regularly presented in large quantities on the contaminated site (such as brine leakages and salt-water spills), causing a devastating shock with high salt stress to the ecosystem. For instance, Saskatchewan resulted in a 48% drop in wheat production and a 0.

View Article and Find Full Text PDF

Coastal waters are complex and dynamic areas with unique environmental attributes that complicate the vertical migration of microplastics (MPs). The MPs that enter coastal waters from diverse sources, including terrestrial, riverine, oceanic, and shoreline inputs undergo various aging pathways. In this study, the variations in the physiochemical characteristics of MPs undergoing various aging pathways and their vertical migration under dynamic conditions subjected to the effects of different MP characteristics and coastal environmental features were comprehensively explored.

View Article and Find Full Text PDF

The detachment of microplastics (MPs) from porous media under different moisture conditions and flow regimes has garnered limited attention within the research community. The present study investigates the detachment of MPs from porous media under wet and dry conditions combined with steady and transient flow. For both the wet and dry conditions, the increase in flow rates is found to decrease the detachment of hydrophobic polyethylene of two sizes and of hydrophilic polymethylmethacrylate.

View Article and Find Full Text PDF

Nexus approach provides an effective perspective for implementing synergetic management of water resources. In this study, an interval two-stage chance-constrained water rights trading planning model under water-ecology-food nexus perspective (ITCWR-WEF) is proposed to analyze the interaction between water trading and water-ecology-food (WEF) nexus, which fills in the water resources management gaps from a novel nexus perspective. ITCWR-WEF incorporates hydrological simulation with soil and water assessment tool (SWAT), water rights configuration with interval two-stage chance-constrained programming (ITCP), and multi-criterion analysis with Technique for Order Preference by Similarity to an Ideal Solution (TOPSIS).

View Article and Find Full Text PDF

The estuary is an energetic area connecting the inland, river, and ocean. The migration of microplastics (MPs) in this highly complex area is tied to the entire ecosystem. In this study, the effects of cohesive SPM (clay) and noncohesive SPM (sand) on the vertical migration of positively buoyant MPs, polyethylene (PE), and negatively buoyant MPs, polytetrafluoroethylene (PTFE), in the estuarine environment under hydrodynamic disturbances were investigated.

View Article and Find Full Text PDF

This study develops a novel Taguchi-STIRPAT input-output (TSIO) model for exploring pathways to reduce carbon emission from the perspective of household consumption, through incorporating input-output model (IOM), Taguchi design (TD), and STIRPAT model. TSIO can not only identify the main factors (carbon emission intensity, consumption structure, per capita consumption, and population) and evaluate their effects on indirect household carbon emissions (IHC), but also predict IHC from a long-term perspective to achieve the dual-carbon target. TSIO is then applied to Fujian province (China), where multiple scenarios related to multiple factors with multiple levels are examined.

View Article and Find Full Text PDF

A low-cost path system for achieving carbon neutrality in China was modelled using multi-objective programming by integrating industrial production, electric power, heating, transportation, and forest carbon sequestration. We aimed to minimise the total system cost, CO emissions, and air pollutants. The constraints included China's targets of peaking CO emissions before 2030; achieving carbon neutrality before 2060; ensuring industry, power, heating, and transportation supplies; promoting green energy; and implementing emission control.

View Article and Find Full Text PDF

This study presents a novel decision-support framework for the bioethanol supply chain network planning and management under uncertainties. Under the holistic framework, the most suitable sites for biorefineries are first screened out by adopting a GIS-based multi-criteria decision-making approach. Then, a mixed-integer linear programming model combined with quantile-based scenario analysis is developed to determine the strategic planning (i.

View Article and Find Full Text PDF

High salinity has plagued wastewater treatment for a long time by hindering pollutant removal, thereby becoming a global challenge for water pollution control that is difficult to overcome even with massive energy consumption. Herein, we propose a novel process for rapid salinity-mediated water self-purification in a dual-reaction-centers (DRC) system with cation-π structures. In this process, local hydrogen bond networks of HO molecules can be distorted through the mediation of salinity, thereby opening the channels for the preferential contact of pollutants on the DRC interface.

View Article and Find Full Text PDF

As one of the most challenging environment issues worldwide, climate change has posed a serious threat to habitat, species, and people's livelihoods. In this study, a sector-disaggregated cross-regional emission analysis model is developed to systematically analyze enviro-economic effects of sector-level carbon mitigation efforts from both production and consumption perspectives for supporting climate change-related policymaking. A special case study of Hubei Province, China, is conducted to demonstrate the potential benefits of its use in the climate change related policymaking field.

View Article and Find Full Text PDF

Improper disposal of waste biomass and an increasing number of emerging contaminants (ECs) in water environment are universal threats to the global environment. Here, we creatively propose a sustainable strategy for the direct resource transformation of livestock manure (LM) into an innovative catalyst (Fe-CCM) for water self-purification with zero external consumption. ECs can be rapidly degraded in this self-purification system at ambient temperature and atmospheric pressure, without any external oxidants or energy input, accompanied by HO and dissolved oxygen (DO) activation.

View Article and Find Full Text PDF

The acceleration of the urbanization process brings about the expansion of urban land use, while changes in land-use transformation affect the urban habitat quality, and land-use change brings a threat to regional sustainable development. Against such a backdrop, the assessment of land use on the habitat quality and the relationship between the intensity of human activities is becoming a hot spot in terms of the current land use coordinated with habitat quality. Based on the land-use data of Guiyang in 2000, 2005, 2010, 2015 and 2020, the spatial-temporal evolution characteristics of habitat quality in the study area, combined with the spatial correlation between human activity intensity and habitat quality, were hereby analyzed using the InVEST model.

View Article and Find Full Text PDF

Nowadays, the increasing demand for pharmaceuticals and personal care products (PPCPs) has resulted in the uncontrolled release of large amounts of PPCPs into the environment, which poses a great challenge to the existing wastewater treatment technologies. Therefore, novel materials for efficient treatment of PPCPs need to be developed urgently. MOF-derived carbons (MDCs), have many advantages such as high mechanical strength, excellent water stability, large specific surface area, excellent electron transfer capability, and environmental friendliness.

View Article and Find Full Text PDF

The problem of nitrate contamination in water has attracted widespread attention. Original biochar has a poor adsorption capacity for nitrate adsorption. Iron impregnation and acid protonation (base deprotonation) are common modification methods for biochar.

View Article and Find Full Text PDF