It remains challenging to forecast local, seasonal outbreaks of influenza. The goal of this study was to construct a computational model for predicting influenza incidence. We built two computational models including an Autoregressive Distributed Lag (ARDL) model and a hybrid model integrating ARDL with a Generalized Regression Neural Network (GRNN), to assess meteorological factors associated with temporal trends in influenza incidence.
View Article and Find Full Text PDF