Biomed Phys Eng Express
August 2024
In this study, an individualized and stable passive-control lower-limb exoskeleton robot was developed. Users' joint angles and the center of pressure (CoP) of one of their soles were input into a convolutional neural network (CNN)-long short-term memory (LSTM) model to evaluate and adjust the exoskeleton control scheme. The CNN-LSTM model predicted the fitness of the control scheme and output the results to the exoskeleton robot, which modified its control parameters accordingly to enhance walking stability.
View Article and Find Full Text PDF