The reflective method is utilized in the optical zoom function of a thin camera for the advantage of folding the optical path. An ionic polymer metal composite deformable mirror used in a reflective zoom system achieves large deformations to change optical power with a low bias voltage. Polydimethylsiloxane is used as a buffer layer to improve surface roughness.
View Article and Find Full Text PDFMiniaturization is an essential trend in the design of portable devices. Motor-driven lens technology is a traditional way to achieve autofocus and optical zoom functions. This approach usually requires considerable space and consumes significant power.
View Article and Find Full Text PDFIn this paper, a new application of an electro-active-polymer for a radio frequency (RF) switch is presented. We used an ionic polymer metallic composite (IPMC) switch to change the operating frequency of an inverted-F antenna. This switch is light in weight, small in volume, and low in cost.
View Article and Find Full Text PDFHigh infrared absorption, large temperature coefficient of resistance (TCR) and small 1/f noise are preferred characteristics for sensing materials used in bolometers. In this paper, we discuss a cytochrome c protein as a potential sensing material for long-wavelength bolometers. We simulated and experimentally proved high infrared absorption of cytochrome c in the wavelength between 8 μm and 14 μm.
View Article and Find Full Text PDFThere are two critical parameters for microbolometers: the temperature coefficient of resistance (TCR) of the sensing material, and the thermal conductance of the insulation structure. Cytochrome c protein, having a high TCR, is a good candidate for infrared detection. We can use SU-8 photoresist for the thermal insulation structure, given its low thermal conductance.
View Article and Find Full Text PDFConventional camera modules with image sensors manipulate the focus or zoom by moving lenses. Although motors, such as voice-coil motors, can move the lens sets precisely, large volume, high power consumption, and long moving time are critical issues for motor-type camera modules. A deformable mirror (DM) provides a good opportunity to improve these issues.
View Article and Find Full Text PDFIn order to determine light aberrations, Shack-Hartmann optical wavefront sensors make use of microlens arrays (MLA) to divide the incident light into small parts and focus them onto image planes. In this paper, we present the design and fabrication of long focal length MLA with various shapes and arrangements based on a double layer structure for optical wavefront sensing applications. A longer focal length MLA could provide high sensitivity in determining the average slope across each microlens under a given wavefront, and spatial resolution of a wavefront sensor is increased by numbers of microlenses across a detector.
View Article and Find Full Text PDFThe conventional auto-focus and zoom image systems were made by a set of motor-moved lenses. Because of mechanical moving parts, it is not easy to miniaturize their sizes. In this paper, we propose a thin autofocus system using a large stroke MEMS (micro-electro-mechanical systems) deformable mirror which has the potential to downscale the size and to minimize chromatic aberration.
View Article and Find Full Text PDFAlong with the progress of image sensors in recent years, fix-focus cameras on mobile electronic devices do not fulfill consumer needs. With the size of mobile devices getting smaller and smaller, the displacement-to-thickness ratio is getting larger, and that makes mechanical motor systems difficult to be packaged inside cameras to achieve autofocus function. We propose a design using micromachined fluoropolymer deformable mirrors rather than traditional mechanical motor.
View Article and Find Full Text PDFWe demonstrate a beam-scanning nonlinear light endoscope based on a flexible fiber bundle. Excited with a femtosecond Cr:Forsterite laser, the degradation in multiphoton multiharmonic excitation efficiency due to the pulse-broadening effect is significantly reduced without utilizing any external devices. The system resolution has been characterized to be 5.
View Article and Find Full Text PDFSensors (Basel)
September 2007
In this paper, we report spring corner designs and driving waveforms to improve the reliability for a MEMS (Micro-Electro-Mechanical System) actuator. In order to prevent the stiction problems, no stopper or damping absorber is adopted. Therefore, an actuator could travel long distance by electromagnetic force without any object in moving path to absorb excess momentum.
View Article and Find Full Text PDF