Publications by authors named "Guo-Chun Ding"

Nanotechnology and biotechnology offer promising avenues for bolstering food security through the facilitation of soil nitrogen (N) sequestration and the reduction of nitrate leaching. Nonetheless, a comprehensive and mechanistic evaluation of their effectiveness and safety remains unclear. In this study, a soil remediation strategy employing nano-FeO and straw in N-contaminated soil was developed to elucidate N retention mechanisms via diverse metagenomics techniques.

View Article and Find Full Text PDF

Composts are often suppressive to several plant diseases, including the devastating bacterial wilt caused by Ralstonia solanacearum. However, the underlying mechanisms are still unclear. Herein, we carried out an experiment with 38 composts collected from different factories in China to study the interlinking among bacterial wilt suppression, the physicochemical properties and bacterial community of the compost, and bacterial community in the rhizosphere of tomato fertilized by compost.

View Article and Find Full Text PDF

Beneficial microorganisms can protect crop from phytopathogens, and modify rhizosphere microbiome. However, it is not well-understood whether or how do rhizosphere microorganisms which respond to bioagents contribute to disease suppression. Bacillus velezensis BER1 and tomato bacterial wilt caused by Ralstonia solanacearum were selected as models to disentangle the interactions and mechanisms in the rhizosphere.

View Article and Find Full Text PDF

Digestate can spread pathogens into agroecosystem, posing serious threats to public health. However, the effect of digestate fertilization on digestate- or soil-borne pathogens has not been fully explored. Herein, two settings of microcosm experiment were performed with arable soil and digestate collected at two sites (Beilangzhong or Shunyi) to dissect the succession of the total and potential pathogenic bacterial communities following digestate fertilization.

View Article and Find Full Text PDF

Composting is an important method for treating and recycling organic waste, and the use of microbial inoculants can increase the efficiency of composting. Herein, we illustrate an approach that integrate 16S rRNA amplicon metagenomics and selective culture of thermophilic bacteria for the development of inoculants to improve manure composting. The 16S rRNA amplicon sequencing analysis revealed that Firmicutes and Actinobacteria were dominant in the composting mixture, and that different microbial hubs succeeded during the thermophilic stage.

View Article and Find Full Text PDF

The properties of plant rhizosphere are dynamic and heterogeneous, serving as different habitat filters for or against certain microorganisms. Herein, we studied the spatial distribution of bacterial communities in the rhizosphere of pepper plants treated with a disease-suppressive or non-suppressive soil. The bacterial richness was significantly ( < 0.

View Article and Find Full Text PDF

Compost is frequently served as the first reservoir for plants to recruit rhizosphere microbiome when used as growing substrate in the seedling nursery. In the present study, recruitment of rhizosphere microbiome from two composts by tomato, pepper, or maize was addressed by shotgun metagenomics and 16S amplicon sequencing. The 16S amplicon sequencing analysis showed that 41% of variation in the rhizosphere bacterial community was explained by compost, in contrast to 23% by plant species.

View Article and Find Full Text PDF

Nitrate leaching is severe in greenhouse where excessive nitrogen is often applied to maintain high crop productivities. In this study, we investigated the effects of carbon amendment in the subsoil on nitrate leaching and the emission of greenhouse gases (CH and NO) using a soil column experiment. Carbon amendment resulted in over 39% reduction in nitrate leaching and 25.

View Article and Find Full Text PDF

Organic greenhouse farming is an innovative system that may maintain a high yield and healthy agroecosystem. There have been no rigorous studies on the comparison of total and nitrogen-cycling bacterial community in vegetable soils between organic and conventional farming management at large scale. A survey of bacterial community and nitrogen cycles from soils under organic and conventional greenhouse farming was performed at 30 sites, covering seven soil types with 4 to 18 years of organic farming history.

View Article and Find Full Text PDF

Fertilizer-replacement programs by the ministry of agriculture and rural affairs are extraordinary actions for environment protection and sustainable agriculture in China. A national-level survey was performed to acquire consensuses of bio-physiochemical properties for composts. A total of 116 compost samples collected from 16 provinces in China were analyzed by high throughput sequencing of bacterial 16S rRNA gene amplicons.

View Article and Find Full Text PDF

Soil microbial communities interact with roots, affecting plant growth and nutrient acquisition. In the present study, we aimed to decipher the effects of the inoculants Trichoderma harzianum T-22, Pseudomonas sp. DSMZ 13134, Bacillus amyloliquefaciens FZB42 or Pseudomonas sp.

View Article and Find Full Text PDF

The ability of a rhizosphere-derived microbial product (composed of a consortium of a strain of and a strain of ) to suppress common scab disease in potato caused by spp. was examined over a two-year period. Relative to the condition in which 0 kg·ha of the designated microbial product was applied (control), the disease index decreased by 30.

View Article and Find Full Text PDF

In the present study, we explored the dynamics of antibiotics (ciprofloxacin, norfloxacin, enrofloxacin, and oxytetracycline), tetracycline resistance genes (TRGs), and bacterial communities over 2013-2015 in soils fertilized conventionally or with two levels (82.5 and 165 t/ha) of compost for 12 years. In the soil receiving 165 t/ha of compost, only oxytetracycline was 46% higher than that in the conventionally fertilized soil.

View Article and Find Full Text PDF

Understanding the interplay between the farming system and soil microbiomes could aid the design of a sustainable and efficient farming system. A comparative greenhouse experiment consisting of organic (ORG), integrated (INT) and conventional (CON) farming systems was established in northern China in 2002. The effects of 12 years of organic farming on soil microbiomes were explored by metagenomic and 16S rRNA gene amplicon sequencing analyses.

View Article and Find Full Text PDF

Soil-borne diseases are often less severe in organic farms, possibly because of the recruitment of beneficial microorganisms by crops. Here, the suppressiveness of organic, integrated, and conventionally managed soils to pepper blight () was studied in growth chamber experiments. Disease incidence was 41.

View Article and Find Full Text PDF

Understanding the ecology of phosphate solubilizing bacteria (PSBs) is critical for developing better strategies to increase crop productivity. In this study, the diversity of PSBs and of the total bacteria in the rhizosphere of eggplant (Solanum melongena L.) cultivated in organic, integrated and conventional farming systems was compared at four developmental stages of its lifecycle.

View Article and Find Full Text PDF

The application of manure, typically harboring bacteria carrying resistance genes (RGs) and mobile genetic elements (MGEs), as co-substrate in biogas plants (BGPs) might be critical when digestates are used as fertilizers. In the present study, the relative abundance of RGs and MGEs in total community (TC-) DNA from manure, fermenters and digestate samples taken at eight full-scale BGPs co-fermenting manure were determined by real-time PCR. In addition, the bacterial community composition of all digestates as well as manure and fermenter material from one BGP (BGP3) was characterized by 454-pyrosequencing of 16S rRNA amplicons from TC-DNA.

View Article and Find Full Text PDF

On-farm biopurification systems (BPSs) treat pesticide-contaminated wastewater at farms through biodegradation and sorption processes. However, information on the microbiota involved in pesticide removal in BPSs is scarce. Here we report on the response of BPS bacterial communities to the herbicide linuron (BPS(+)) compared with the control (BPS(-)) in a microcosm experiment.

View Article and Find Full Text PDF

Replant disease (RD) severely affects apple production in propagation tree nurseries and in fruit orchards worldwide. This study aimed to investigate the effects of soil disinfection treatments on plant growth and health in a biotest in two different RD soil types under greenhouse conditions and to link the plant growth status with the bacterial community composition at the time of plant sampling. In the biotest performed we observed that the aboveground growth of apple rootstock M26 plants after 8 weeks was improved in the two RD soils either treated at 50°C or with gamma irradiation compared to the untreated RD soils.

View Article and Find Full Text PDF

Aconcagua River basin (Central Chile) harbors diverse economic activities such as agriculture, mining and a crude oil refinery. The aim of this study was to assess environmental drivers of microbial communities in Aconcagua River estuarine soils, which may be influenced by anthropogenic activities taking place upstream and by natural processes such as tides and flood runoffs. Physicochemical parameters were measured in floodplain soils along the estuary.

View Article and Find Full Text PDF

Bacterial biocontrol strains used as an alternative to chemical fungicides may influence bacterial communities in the rhizosphere and effects might differ depending on the soil type. Here we present baseline data on the effects of Pseudomonas jessenii RU47 on the bacterial community composition in the rhizosphere of lettuce grown in diluvial sand, alluvial loam and loess loam at the same field site. 16S rRNA gene fragments amplified from total community DNA were analyzed by denaturing gradient gel electrophoresis (DGGE) and pyrosequencing.

View Article and Find Full Text PDF

The complex and enormous diversity of microorganisms associated with plant roots is important for plant health and growth and is shaped by numerous factors. This study aimed to unravel the effects of the soil type on bacterial communities in the rhizosphere of field-grown lettuce. We used an experimental plot system with three different soil types that were stored at the same site for 10 years under the same agricultural management to reveal differences directly linked to the soil type and not influenced by other factors such as climate or cropping history.

View Article and Find Full Text PDF

Biopurification systems (BPS) are used on farms to control pollution by treating pesticide-contaminated water. It is assumed that mobile genetic elements (MGEs) carrying genes coding for enzymes involved in degradation might contribute to the degradation of pesticides. Therefore, the composition and shifts of MGEs, in particular, of IncP-1 plasmids carried by BPS bacterial communities exposed to various pesticides, were monitored over the course of an agricultural season.

View Article and Find Full Text PDF

Large amounts of manure have been applied to arable soils as fertilizer worldwide. Manure is often contaminated with veterinary antibiotics which enter the soil together with antibiotic resistant bacteria. However, little information is available regarding the main responders of bacterial communities in soil affected by repeated inputs of antibiotics via manure.

View Article and Find Full Text PDF

The hypothesis that sweet potato genotypes containing different starch yields in their tuberous roots can affect the bacterial communities present in the rhizosphere (soil adhering to tubers) was tested in this study. Tuberous roots of field-grown sweet potato of genotypes IPB-149 (commercial genotype), IPB-052, and IPB-137 were sampled three and six months after planting and analyzed by denaturing gradient gel electrophoresis (DGGE) and pyrosequencing analysis of 16S rRNA genes PCR-amplified from total community DNA. The statistical analysis of the DGGE fingerprints showed that both plant age and genotypes influenced the bacterial community structure in the tuber rhizosphere.

View Article and Find Full Text PDF