Publications by authors named "Guo Zhang Jin"

The initiation of psychostimulant sensitization depends on the mesocorticolimbic dopamine (DA) system. Although many cellular adaptations has been reported to be associated with this addictive behavior, the overall influence of these adaptations on the network regulation of DA neurons has not been established. Here, we profile a network-driven slow oscillation (SO) in the firing activity of ventral tegmental area (VTA) putative DA and non-DA neurons and their correlation with locomotor sensitization induced by repeated administration of cocaine.

View Article and Find Full Text PDF

Major depressive disorder (MDD) is a common neuropsychiatric disorder characterized by diverse symptoms. Although several antidepressants can influence dopamine system in the medial prefrontal cortex (mPFC), but the role of D1R or D2R subtypes of dopamine receptor during anti-depression process is still vague in PFC region. To address this question, we investigate the antidepressant effect of levo-stepholidine (l-SPD), an antipsychotic medication with unique pharmacological profile of D1R agonism and D2R antagonism, and clarified its molecular mechanisms in the mPFC.

View Article and Find Full Text PDF

Aim: 3-Methyl-6-chloro-7,8-hydroxy-1-(3-methylphenyl)-2,3,4,5-tetrahydro-1H-3-benzazepine (SKF83959) have been shown to affect several types of voltage-dependent channels in hippocampal pyramidal neurons. The aim of this study was to determine how modulation of a individual type of the channels by SKF83959 contributes to the overall excitability of CA1 pyramidal neurons during either direct current injections or synaptic activation.

Methods: Rat hippocampal slices were prepared.

View Article and Find Full Text PDF

Aim: SKF83959 (3-methyl-6-chloro-7,8-hydroxy-1-(3-methylphenyl)-2,3,4,5-tetrahydro-1H-3-benzazepine) is an atypical dopamine receptor-1 (D1 receptor) agonist, which exhibits many D1 receptor-independent effects. In the present work, we examined the effects of SKF83959 on monoaminergic transporters in vitro and its anti-depressant activity in vivo.

Methods: Human serotonin transporter (SERT), norepinephrine transporters (NET) or dopamine transporters (DAT) were stably expressed in CHO cells.

View Article and Find Full Text PDF

Dopamine (DA) neurons in the ventral tegmental area (VTA) not only participate in reward processing, but also respond to aversive stimuli. Although GABA neurons in this area are actively involved in regulating the firing of DA neurons, few data exist concerning the responses of these neurons to aversive sensory input. In this study, by employing extracellular single-unit recording and spectral analysis techniques in paralyzed and ventilated rats, we found that the firing pattern in 44% (47 of 106) of GABA cells in the VTA was sensitive to the sensory input produced by the ventilation, showing a significant ventilation-associated oscillation in the power spectra.

View Article and Find Full Text PDF

Dopamine (DA) profoundly modulates excitatory synaptic transmission and synaptic plasticity in the brain. In the present study the effects of SKF83959, the selective agonist of phosphatidylinositol (PI)-linked D(1) -like receptor, on the excitatory synaptic transmission were investigated in rat hippocampus. SKF83959 (10-100 μM) reversibly suppressed the field excitatory postsynaptic potential (fEPSP) elicited by stimulating the Schaffer's collateral-commissural fibers in CA1 area of hippocampal slices.

View Article and Find Full Text PDF

Although the potent anti-parkinsonian action of the atypical D₁-like receptor agonist SKF83959 has been attributed to the selective activation of phosphoinositol(PI)-linked D₁ receptor, whereas the mechanism underlying its potent neuroprotective effect is not fully understood. In the present study, the actions of SKF83959 on neuronal membrane potential and neuronal excitability were investigated in CA1 pyramidal neurons of rat hippocampal slices. SKF83959 (10-100 µM) caused a concentration-dependent depolarization, associated with a reduction of input resistance in CA1 pyramidal neurons.

View Article and Find Full Text PDF

Tetrahydroberberine (THB) exhibits neuroprotective effects but its targets and underlying mechanisms are largely unknown. Emerging evidence indicates that ATP-sensitive potassium (K(ATP)) channels in the substantia nigra pars compacta (SNc) promote Parkinson disease (PD) pathogenesis, thus blocking K(ATP) channels may protect neurons against neuronal degeneration. In the present study, we tested a hypothesis that THB blocks K(ATP) channels in dopaminergic (DA) neurons acutely dissociated from rat SNc.

View Article and Find Full Text PDF

Rationale: l-Stepholidine (l-SPD), a tetrahydroprotoberberine alkaloid, possesses a pharmacological profile of a D₁/5-HT(1A) agonist and a D₂ antagonist. This unique pharmacological profile makes it a promising novel antipsychotic candidate. Preliminary clinical trials and animal experiments suggest that l-SPD improves both positive and negative symptoms of schizophrenia without producing significant extrapyramidal side effects.

View Article and Find Full Text PDF

Central dopaminergic system exerts profound modulation on spontaneous glutamate release in various brain regions mainly through D(1) receptor/cAMP/PKA pathway. It remains unclear whether the phosphatidylinositol (PI)-linked D(1)-like receptors are also involved in such modulatory actions. The identification of substituted phenylbenzazepine SKF83959 as the selective agonist for the atypical D(1)-like receptors has given impetus to study their influence on the spontaneous glutamate release in the brain.

View Article and Find Full Text PDF

(+/-) SKF83959, like many other arylbenzazepines, elicits powerful neuroprotection in vitro and in vivo. The neuroprotective action of the compound was found to partially depend on its D(1)-like dopamine receptor agonistic activity. The precise mechanism for the (+/-) SKF83959-mediated neuroprotection remains elusive.

View Article and Find Full Text PDF

Aim: Dopaminergic neurons in the substantia nigra pars compacta (SNc) play important roles in motor control and drug addiction. As the major afferent, GABAergic innervation controls the activity of SNc dopaminergic neurons. Although it is clear that nicotine modulates SNc dopaminergic neurons by activating subtypes of somatodendritic nicotinic acetylcholine receptors (nAChRs), the detailed mechanisms of this activation remain to be addressed.

View Article and Find Full Text PDF

Neuronal nicotinic acetylcholine receptors (nAChRs) are the superfamily of ligand-gated ion channels and widely expressed throughout the central and peripheral nervous systems. nAChRs play crucial roles in modulating a wide range of higher cognitive functions by mediating presynaptic, postsynaptic, and extrasynaptic signaling. Thus far, nine alpha (alpha2-alpha10) and three beta (beta2, beta3, and beta4) subunits have been identified in the CNS, and these subunits assemble to form a diversity of functional nAChRs.

View Article and Find Full Text PDF

Objective: To explore the possible differential trafficking properties of the dopamine D1-like receptor subtypes, D1 receptor and D5 receptor.

Methods: To visualize distributions of dopamine D1-like receptor subtypes at subcellular level, the yellow and cyan variants of green fluorescent protein (GFP) were used to tag D1 and D5 receptors. After transfection with the tagged dopamine receptors, the neuroblastoma cells NG108-15 were treated with D1 agonist SKF38393 or acetylcholine (ACh).

View Article and Find Full Text PDF

The present study aims to define the role of postsynaptic density (PSD)-95 in the regulation of dopamine (DA) receptor function. We found that PSD-95 physically associates with either D(1) or D(2) DA receptors in co-transfected HEK-293 cells. Stimulation of DA receptors altered the association between D(1) receptor and PSD-95 in a time-dependent manner.

View Article and Find Full Text PDF

Background: Clinical observation and experimental studies have indicated that a single exposure to morphine could induce tolerance and dependence. It has become a concern in clinical antinociceptive practice. However, the underling mechanism remains unknown.

View Article and Find Full Text PDF

L-3,4-dihydroxyphenylalanine (L-DOPA)-induced dyskinesia (LID) remains a challenge in Parkinson's disease (PD) drug therapy. In the present study, we examined the effect of L-stepholidine (L-SPD), a known dual dopamine receptor agent, on LID in 6-hydroxydopamine (6-OHDA)-lesioned PD rat model. Daily administration of L-DOPA to PD rats for 22 days induced steady expression of LID, co-administration of L-SPD with L-DOPA significantly ameliorated LID without compromising the therapeutic potency of L-DOPA, indicating that L-SPD attenuated LID development.

View Article and Find Full Text PDF

Aim: Drug addiction is a chronic brain disease with constant relapse requiring long-term treatment. New pharmacological strategies focus on the development of an effective antirelapse drug. This study examines the effects of levotetrahydropalmatine (l-THP) on reducing heroin craving and increasing the abstinence rate among heroin-dependent patients.

View Article and Find Full Text PDF

Tetrahydroprotoberberines (THPBs) represent a series of compounds extracted from the Chinese herb Corydalis ambigua and various species of Stephania. THPBs, dependent on the presence of hydroxyl groups in its structure, are divided into three types: nonhydroxyl-THPBs, monohydroxyl-THPBs and dihydroxyl-THPBs. THPBs are identified as a new category of dopamine receptor ligands.

View Article and Find Full Text PDF

Neuronal oscillations have been suggested to play an important role in information processing in the brain. Using spectral analysis, we have recently shown that the repetitive burst-like firing in many dopamine (DA) neurons in the ventral tegmental area (VTA) can be described as a slow oscillation (SO) in firing rate. In this study, we examined whether DA neurons in the adjacent substantia nigra (SN) also display a SO.

View Article and Find Full Text PDF

3-methyl-6-chloro-7,8-hydroxy-1-(3-methylphenyl)-2,3,4,5-tetrahydro-1H-3-benzazepine (SKF83959), a selective agonist for the putative phosphatidylinositol (PI)-linked dopamine receptor (DAR), has been shown to possess potent anti-Parkinson disease effects but produces less dyskinesia and motor fluctuation that are frequently observed in Parkinson disease drug therapies. The present study was designed to detect the neuroprotection of SKF83959 and its potential mechanism for the effect in cultured rat cortical cells. The presence of SKF83959 with a dose range of 0.

View Article and Find Full Text PDF

Aim: To examine whether (-)-stepholidine (SPD) has a direct effect on the N-methyl- D-aspartic acid receptors (NMDAR) containing the NMDA receptor subunits NR2A or NR2B and to compare its effect with those of haloperidol (Hal) and clozapine (Cloz).

Methods: NMDAR was transiently expressed in human embryonic kidney 293 (HEK293) cells. Changes in intracellular calcium concentration ([Ca2+]i) induced by NMDAR activation were monitored with Fura-2 ratio imaging techniques.

View Article and Find Full Text PDF

Stimulation of the prefrontal cortex (PFC) has been shown to have an excitatory influence on dopamine (DA) neurons. We report here that, under nonstimulated conditions, the activity of DA neurons in the ventral tegmental area (VTA) also covaries, on a subsecond timescale, with the activity of PFC cells. Thus, in 67% of VTA DA neurons recorded in chloral hydrate-anesthetized rats, the firing of the cell displayed a slow oscillation (SO) that was highly coherent with the activity of PFC neurons.

View Article and Find Full Text PDF

Aim: To elucidate the role of scaffold protein postsynaptic density (PSD)-95 in the dopamine D1 receptor (D1R)-modulated NR1a/NR2B receptor response.

Methods: The human embryonic kidney 293 cells expressing D1R (tagged with the enhanced yellow fluorescent protein) and NR1a/NR2B with or without co-expression of PSD-95 were used in the experiments. The Ca2+ influx measured by imaging technique was employed to monitor N-methyl-D-aspartic acid receptors (NMDAR) function.

View Article and Find Full Text PDF