Mult Scler Relat Disord
November 2024
Objective: To investigate the clinical characteristics of children with myelin oligodendrocyte glycoprotein antibody-associated disease (MOGAD).
Methods: A retrospective analysis was conducted on the clinical data, antibody tests, imaging, and factors associated with recurrence in 24 children diagnosed with MOGAD at Wuxi Children's Hospital from December 2017 to December 2023.
Results: Among the 24 included children, the clinical characteristics at the onset of the first episode included fever (12 cases), headache (8), decreased vision (7), drowsiness (6), convulsions (5), ataxia (3), paralysis of both lower limbs (2), urinary and fecal incontinence (2), and central facial palsy (1).
Jujube is susceptible to biotic and abiotic adversity stresses resulting in abnormal phenotypic defects. Therefore, abnormal phenotype fruits should be removed during postharvest sorting to increase added value. An improved maximum horizontal diameter linear regression (MHD-LR) method for size grading of jujube prior to detection of abnormal phenotypic defects was developed.
View Article and Find Full Text PDFBackground: Despite endothelial dysfunction being an initial step in the development of hypertension and associated cardiovascular/renal injuries, effective therapeutic strategies to prevent endothelial dysfunction are still lacking. GPR183 (G protein-coupled receptor 183), a recently identified G protein-coupled receptor for oxysterols and hydroxylated metabolites of cholesterol, has pleiotropic roles in lipid metabolism and immune responses. However, the role of GPR183 in the regulation of endothelial function remains unknown.
View Article and Find Full Text PDFUnlabelled: Identifying dysregulated plasma proteins in osteoporosis (OP) progression offers insights into prevention and treatment. This study found 8 such proteins associated with OP, suggesting them as therapy targets. This discovery may cut drug development costs and improve personalized treatments.
View Article and Find Full Text PDFBackground: Osteoporosis and major depressive disorder (MDD) represent two significant health challenges globally, particularly among perimenopausal women. This study utilizes NHANES data and Mendelian randomization (MR) analysis to explore the link between them, aiming to provide a basis for intervention strategies for this group.
Methods: The study analyzed NHANES 2007-2018 data using weighted logistic regression in R software to evaluate the link between MDD and osteoporosis risk.
It is expected that waterless low-temperature stressful environments will induce stress responses in fish and affect their vitality. In this study, we developed a laser-activated, stretchable, highly conductive liquid metal (LM) based flexible sensor system for fish multi-scale bioimpedance detection. It has excellent conformability, electrical conductivity, bending and cyclic tensile stability.
View Article and Find Full Text PDFAccumulating evidence shows that renal fibrosis plays a key role in the development of hypertensive nephropathy (HTN). Therefore, a better understanding of the underlying mechanism of renal fibrosis regulation in HTN would be critical for designing rational strategies for therapeutic interventions. In this study, we revealed that GPR97, a novel identified adhesion G coupled receptor, plays an important role in the regulation of Wnt/β-catenin signaling, which is the crucial driver of renal fibrosis in HTN.
View Article and Find Full Text PDFObjective: Endometrial cancer (EC) is a common gynecological malignant tumor. CircRNAs play crucial roles in cancer progression and metastasis. However, the biological functions of circRNAs in EC remain largely unknown.
View Article and Find Full Text PDFNatural killer/T-cell lymphoma (NK/TL) is a chemotherapy-sensitive disease, and asparaginase-based chemotherapy has become the standard primary treatment for patients with this malignancy recently. The objective of this study was to evaluate the adverse reactions on blood coagulation of the administered pegylated Escherichia coli (E coli) asparaginase (PEG-ASP) to the NK/TL patients. Clinical data of 71 NK/TL patients (range 13-73 years), who received 239 cycles of chemotherapy treatment containing PEG-ASP in the Hematology Department of Shanxi Province Cancer Hospital of China from January 2016 to December 2019 were analyzed retrospectively.
View Article and Find Full Text PDFThere is an obvious gap between efforts dedicated to the control of chemicophysical and morphological properties of catalyst active phases and the attention paid to the search of new materials to be employed as functional carriers in the upgrading of heterogeneous catalysts. Economic constraints and common habits in preparing heterogeneous catalysts have narrowed the selection of active-phase carriers to a handful of materials: oxide-based ceramics ( AlO, SiO, TiO, and aluminosilicates-zeolites) and carbon. However, these carriers occasionally face chemicophysical constraints that limit their application in catalysis.
View Article and Find Full Text PDFPulm Pharmacol Ther
October 2020
Background: This research aims to illustrate the effect of lncRNA StAR Related Lipid Transfer Domain Containing 13 antisense RN (STARD13-AS)/miR-1248/C3A on lung squamous carcinoma cells growth and metastasis.
Methods: Bioinformatics analysis was applied to detect the expression of STARD13-AS/miR-1248/C3A in lung cancer samples and establish the ceRNA network. Transfection was performed to construct over-expression or knockdown models.
Cubic silicon carbide (3C-SiC) material feature a suitable bandgap and high resistance to photocorrosion. Thus, it has been emerged as a promising semiconductor for hydrogen evolution. Here, the relationship between the photoelectrochemical properties and the microstructures of different SiC materials is demonstrated.
View Article and Find Full Text PDFMaximizing activity of Pt catalysts toward methanol oxidation reaction (MOR) together with minimized poisoning of adsorbed CO during MOR still remains a big challenge. In the present work, uniform and well-distributed Pt nanoparticles (NPs) grown on an atomic carbon layer, that is in situ formed by means of dry-etching of silicon carbide nanoparticles (SiC NPs) with CCl gas, are explored as potential catalysts for MOR. Significantly, as-synthesized catalysts exhibit remarkably higher MOR catalytic activity (e.
View Article and Find Full Text PDFEfficient catalytic hydrogenation of nitroarenes to anilines with molecular hydrogen at room temperature is still a challenge. In this study, this transformation was achieved by using a photocatalyst of SiC-supported segregated Pd and Au nanoparticles. Under visible-light irradiation, the nitrobenzene hydrogenation reached a turnover frequency as high as 1715 h at 25 °C and 0.
View Article and Find Full Text PDFHighly selective hydrogenation of cinnamaldehyde to cinnamyl alcohol with 2-propanol was achieved using SiC-supported Au nanoparticles as photocatalyst. The hydrogenation reached a turnover frequency as high as 487 h(-1) with 100% selectivity for the production of alcohol under visible light irradiation at 20 °C. This high performance is attributed to a synergistic effect of localized surface plasmon resonance of Au NPs and charge transfer across the SiC/Au interface.
View Article and Find Full Text PDFCatalysts for the oxygen reduction reaction (ORR) are highly important in fuel cells and metal-air batteries. Cheap ORR catalysts with ultrahigh electrochemical activity, selectivity, and stability are extremely desirable but still remain challenging. Herein, mesoporous NiCoO nanoplate (NP) arrays on three-dimensional (3D) graphene foam are shown to be a highly economical ORR catalyst.
View Article and Find Full Text PDFN-aryl imidazoles play an important role as structural and functional units in many natural products and biologically active compounds. Herein, we report a photocatalytic route for the C-N cross-coupling reactions over a Cu/graphene catalyst, which can effectively catalyze N-arylation of imidazole and phenylboronic acid, and achieve a turnover frequency of 25.4 h(-1) at 25°C and the irradiation of visible light.
View Article and Find Full Text PDFNiO nanoparticles are deposited onto SiC particles by atomic layer deposition (ALD). The structure of the NiO/SiC hybrid material is investigated by inductively coupled plasma atomic emission spectrometry (ICP-AES), X-ray photoelectron spectroscopy (XPS), and transmission electron microscopy (TEM). The size of the NiO nanoparticles is flexible and can be adjusted by altering the cycle number of the NiO ALD.
View Article and Find Full Text PDFVertically oriented TiO2 nanotube arrays (TNTAs) were conformally coated with an ultrathin nitrogen-doped (N-doped) carbon film via the carbonization of a polyimide film deposited by molecular layer deposition and simultaneously hydrogenated, thereby creating a core/shell nanostructure with a precisely controllable shell thickness. The core/shell nanostructure provides a larger heterojunction interface to substantially reduce the recombination of photogenerated electron-hole pairs, and hydrogenation enhances solar absorption of TNTAs. In addition, the N-doped carbon film coating acts as a high catalytic active surface for oxygen evolution reaction, as well as a protective film to prevent hydrogen-treated TiO2 nanotube oxidation by electrolyte or air.
View Article and Find Full Text PDFDynamic global vegetation model (DGVM) is an important and efficient tool for study on the terrestrial carbon circle processes and vegetation dynamics. This paper reviewed the development history of DGVMs, introduced the basic structure of DGVMs, and the outlines of several world-widely used DGVMs, including CLM-DGVM, LPJ, IBIS and SEIB. The shortages of the description of dynamic vegetation mechanisms in the current DGVMs were proposed, including plant functional types (PFT) scheme, vegetation competition, disturbance, and phenology.
View Article and Find Full Text PDFCopper is a low-cost plasmonic metal. Efficient photocatalysts of copper nanoparticles on graphene support are successfully developed for controllably catalyzing the coupling reactions of aromatic nitro compounds to the corresponding azoxy or azo compounds under visible-light irradiation. The coupling of nitrobenzene produces azoxybenzene with a yield of 90 % at 60 °C, but azobenzene with a yield of 96 % at 90 °C.
View Article and Find Full Text PDFA novel C-Ni-SiC composite using sawtooth-like SiC as support and carbon as modified material was prepared by hydrothermal synthesis and thermochemical pyrolysis. As a supercapacitor electrode, it exhibits very high specific capacitance (1780 F g(-1)) and excellent cycling performance (>96% for 2500 cycles).
View Article and Find Full Text PDFHighly-qualified graphene was prepared by the ultrasonic exfoliation of commercial expanded graphite (EG) under the promotion of (NH4)2CO3 decomposition. The yield of graphene from the first exfoliation is 7 wt%, and it can be increased to more than 65 wt% by repeated exfoliations. Atomic force microscopy, x-ray photoelectron spectroscopy and Raman analysis show that the as-prepared graphene only has a few defects or oxides, and more than 95% of the graphene flakes have a thickness of ~1 nm.
View Article and Find Full Text PDF