Publications by authors named "Guo Shulei"

Soil salinization, a prevalent form of environmental stress, leads to significant soil desertification and impacts agricultural productivity by altering the internal soil environment, slowing cellular metabolism, and modifying cellular architecture. This results in a marked reduction in both the yield and diversity of crops. Maize, which is particularly susceptible to salt stress, serves as a critical model for studying these effects, making the elucidation of its molecular responses essential for crop improvement strategies.

View Article and Find Full Text PDF

High seed vigor is crucial for agricultural production owing to its potential in high quality and yield of crops and a better understanding of the molecular mechanism associated with maize seed vigor is highly necessary. To better understand the involvement and regulatory mechanism of miRNAs correlated with maize seed vigor, small RNAs and degradome sequencing of two inbred lines Yu537A and Yu82 were performed. A total of 791 mature miRNAs were obtained with different expressions, among of which 505 miRNAs were newly identified and the rest miRNAs have been reported before by comparing the miRNAs with the sequences in miRbase database.

View Article and Find Full Text PDF

Resistance to maize rough dwarf disease (MRDD), a major cause of crop losses, depends on external conditions such as the virus transmission period and the rate of viruliferous small brown planthoppers, . The precise identification of MRDD contributes to the utilization of resistant germplasm and the cloning of resistant genes. In this study, eight maize varieties were artificially inoculated in a greenhouse with viruliferous planthoppers.

View Article and Find Full Text PDF

Seed germination, as an integral stage of crop production, directly affects Zea mays (maize) yield and grain quality. However, the molecular mechanisms of seed germination remain unclear in maize. We performed comparative transcriptome analysis of two maize inbred lines, Yu82 and Yu537A, at two stages of seed germination.

View Article and Find Full Text PDF

Background: Maize rough dwarf disease (MRDD) is a severe disease that has been occurring frequently in southern China and many other Asian countries. MRDD is caused by the infection of Rice black streaked dwarf virus (RBSDV) and leads to significant economic losses in maize production. To well understand the destructive effects of RBSDV infection on maize growth, comparative proteomic analyses of maize seedlings under RBSDV infection was performed using an integrated approach involving LC-MS/MS and Tandem Mass Tag (TMT) labeling.

View Article and Find Full Text PDF

Cadmium (Cd) is a heavy metal and is highly toxic to all plant species. However, the underlying molecular mechanism controlling the effects of auxin on the Cd stress response in maize is largely unknown. In this study, the transcriptome produced by maize 'Zheng 58' root responses to Cd stress was sequenced using Illumina sequencing technology.

View Article and Find Full Text PDF

Background: Leaf width is an important agricultural trait in maize. Leaf development is dependent on cell proliferation and expansion, and these processes exhibit polarity with respect to the longitudinal and transverse axes of the leaf. However, the molecular mechanism of the genetic control of seed vigor remains unknown in maize, and a better understanding of this mechanism is required.

View Article and Find Full Text PDF

Background: MicroRNAs (miRNAs) play critical roles in the processes of plant growth and development, but little is known of their functions during dehydration stress in wheat. Moreover, the mechanisms by which miRNAs confer different levels of dehydration stress tolerance in different wheat genotypes are unclear.

Results: We examined miRNA expressions in two different wheat genotypes, Hanxuan10, which is drought-tolerant, and Zhengyin1, which is drought-susceptible.

View Article and Find Full Text PDF

Plant height is one of the most heritable traits in maize (Zea mays L.). Understanding the genetic control of plant height is important for elucidating the molecular mechanisms that regulate maize development.

View Article and Find Full Text PDF
Article Synopsis
  • * Researchers identified 70 quantitative trait loci (QTL) related to internode length across various populations and environments, revealing varying effects on phenotypic variation.
  • * The findings culminated in the integration of QTL into 14 meta-QTL (mQTLs), highlighting the potential for targeted genetic strategies to enhance maize canopy architecture through marker-assisted selection.
View Article and Find Full Text PDF

The well-controlled material assembly and patterning on indium tin oxide (ITO) coating layer is of great importance for the practical fabrication of a functional device. Nonetheless, the conventional way to achieve this aim is still mainly based on the combination of photolithography with pattern transfer techniques (e.g.

View Article and Find Full Text PDF

High seed vigor is important for agricultural production due to the associated potential for increased growth and productivity. However, a better understanding of the underlying molecular mechanisms is required because the genetic basis for seed vigor remains unknown. We used single-nucleotide polymorphism (SNP) markers to map quantitative trait loci (QTLs) for four seed vigor traits in two connected recombinant inbred line (RIL) maize populations under four treatment conditions during seed germination.

View Article and Find Full Text PDF

Background: Modifying plant architecture to increase photosynthesis efficiency and reduce shade avoidance response is very important for further yield improvement when crops are grown in high density. Identification of alleles controlling leaf angle in maize is needed to provide insight into molecular mechanism of leaf development and achieving ideal plant architecture to improve grain yield.

Methodology/principal Findings: The gene cloning was done by using comparative genomics, and then performing real-time polymerase chain reaction (RT-PCR) analysis to assay gene expression.

View Article and Find Full Text PDF